Abstract:To deploy LLMs on resource-contained platforms such as mobile robotics and wearables, non-transformers LLMs have achieved major breakthroughs. Recently, a novel RNN-based LLM family, Repentance Weighted Key Value (RWKV) models have shown promising results in text generation on resource-constrained devices thanks to their computational efficiency. However, these models remain too large to be deployed on embedded devices due to their high parameter count. In this paper, we propose an efficient suite of compression techniques, tailored to the RWKV architecture. These techniques include low-rank approximation, sparsity predictors, and clustering head, designed to align with the model size. Our methods compress the RWKV models by 4.95--3.8x with only 2.95pp loss in accuracy.
Abstract:The performance of Large Language Models (LLMs) on natural language tasks can be improved through both supervised fine-tuning (SFT) and in-context learning (ICL), which operate via distinct mechanisms. Supervised fine-tuning updates the model's weights by minimizing loss on training data, whereas in-context learning leverages task demonstrations embedded in the prompt, without changing the model's parameters. This study investigates the effects of these learning paradigms on the hidden representations of LLMs using Intrinsic Dimension (ID). We use ID to estimate the number of degrees of freedom between representations extracted from LLMs as they perform specific natural language tasks. We first explore how the ID of LLM representations evolves during SFT and how it varies due to the number of demonstrations in ICL. We then compare the IDs induced by SFT and ICL and find that ICL consistently induces a higher ID compared to SFT, suggesting that representations generated during ICL reside in higher dimensional manifolds in the embedding space.
Abstract:Preserving topological structures is important in real-world applications, particularly in sensitive domains such as healthcare and medicine, where the correctness of human anatomy is critical. However, most existing image editing models focus on manipulating intensity and texture features, often overlooking object geometry within images. To address this issue, this paper introduces a novel method, Topology-Preserved Image Editing with text instructions (TPIE), that for the first time ensures the topology and geometry remaining intact in edited images through text-guided generative diffusion models. More specifically, our method treats newly generated samples as deformable variations of a given input template, allowing for controllable and structure-preserving edits. Our proposed TPIE framework consists of two key modules: (i) an autoencoder-based registration network that learns latent representations of object transformations, parameterized by velocity fields, from pairwise training images; and (ii) a novel latent conditional geometric diffusion (LCDG) model efficiently capturing the data distribution of learned transformation features conditioned on custom-defined text instructions. We validate TPIE on a diverse set of 2D and 3D images and compare them with state-of-the-art image editing approaches. Experimental results show that our method outperforms other baselines in generating more realistic images with well-preserved topology. Our code will be made publicly available on Github.
Abstract:Differential privacy (DP) is applied when fine-tuning pre-trained large language models (LLMs) to limit leakage of training examples. While most DP research has focused on improving a model's privacy-utility tradeoff, some find that DP can be unfair to or biased against underrepresented groups. In this work, we show the impact of DP on bias in LLMs through empirical analysis. Differentially private training can increase the model bias against protected groups w.r.t AUC-based bias metrics. DP makes it more difficult for the model to differentiate between the positive and negative examples from the protected groups and other groups in the rest of the population. Our results also show that the impact of DP on bias is not only affected by the privacy protection level but also the underlying distribution of the dataset.
Abstract:Large language models (LLMs) are now being considered and even deployed for applications that support high-stakes decision-making, such as recruitment and clinical decisions. While several methods have been proposed for measuring bias, there remains a gap between predictions, which are what the proposed methods consider, and how they are used to make decisions. In this work, we introduce Rank-Allocational-Based Bias Index (RABBI), a model-agnostic bias measure that assesses potential allocational harms arising from biases in LLM predictions. We compare RABBI and current bias metrics on two allocation decision tasks. We evaluate their predictive validity across ten LLMs and utility for model selection. Our results reveal that commonly-used bias metrics based on average performance gap and distribution distance fail to reliably capture group disparities in allocation outcomes, whereas RABBI exhibits a strong correlation with allocation disparities. Our work highlights the need to account for how models are used in contexts with limited resource constraints.
Abstract:Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks. However, it is empirically found that LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data, such as sequential recommendation. In this paper, we aim to improve temporal awareness of LLMs by designing a principled prompting framework inspired by human cognitive processes. Specifically, we propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation. Besides, we emulate divergent thinking by aggregating LLM ranking results derived from these strategies. Evaluations on MovieLens-1M and Amazon Review datasets indicate that our proposed method significantly enhances the zero-shot capabilities of LLMs in sequential recommendation tasks.
Abstract:Statistical fairness stipulates equivalent outcomes for every protected group, whereas causal fairness prescribes that a model makes the same prediction for an individual regardless of their protected characteristics. Counterfactual data augmentation (CDA) is effective for reducing bias in NLP models, yet models trained with CDA are often evaluated only on metrics that are closely tied to the causal fairness notion; similarly, sampling-based methods designed to promote statistical fairness are rarely evaluated for causal fairness. In this work, we evaluate both statistical and causal debiasing methods for gender bias in NLP models, and find that while such methods are effective at reducing bias as measured by the targeted metric, they do not necessarily improve results on other bias metrics. We demonstrate that combinations of statistical and causal debiasing techniques are able to reduce bias measured through both types of metrics.
Abstract:The development of trustworthy conversational information-seeking systems relies on dialogue models that can generate faithful and accurate responses based on relevant knowledge texts. However, two main challenges hinder this task. Firstly, language models may generate hallucinations due to data biases present in their pretraining corpus. Secondly, knowledge texts often contain redundant and irrelevant information that distracts the model's attention from the relevant text span. Previous works use additional data annotations on the knowledge texts to learn a knowledge identification module in order to bypass irrelevant information, but collecting such high-quality span annotations can be costly. In this work, we leverage reinforcement learning algorithms to overcome the above challenges by introducing a novel reward function. Our reward function combines an accuracy metric and a faithfulness metric to provide a balanced quality judgment of generated responses, which can be used as a cost-effective approximation to a human preference reward model when only a few preference annotations are available. Empirical experiments on two conversational information-seeking datasets demonstrate that our method can compete with other strong supervised learning baselines.
Abstract:Essential for an unfettered data market is the ability to discreetly select and evaluate training data before finalizing a transaction between the data owner and model owner. To safeguard the privacy of both data and model, this process involves scrutinizing the target model through Multi-Party Computation (MPC). While prior research has posited that the MPC-based evaluation of Transformer models is excessively resource-intensive, this paper introduces an innovative approach that renders data selection practical. The contributions of this study encompass three pivotal elements: (1) a groundbreaking pipeline for confidential data selection using MPC, (2) replicating intricate high-dimensional operations with simplified low-dimensional MLPs trained on a limited subset of pertinent data, and (3) implementing MPC in a concurrent, multi-phase manner. The proposed method is assessed across an array of Transformer models and NLP/CV benchmarks. In comparison to the direct MPC-based evaluation of the target model, our approach substantially reduces the time required, from thousands of hours to mere tens of hours, with only a nominal 0.20% dip in accuracy when training with the selected data.
Abstract:Although Shapley values have been shown to be highly effective for identifying harmful training instances, dataset size and model complexity constraints limit the ability to apply Shapley-based data valuation to fine-tuning large pre-trained language models. To address this, we propose TS-DShapley, an algorithm that reduces computational cost of Shapley-based data valuation through: 1) an efficient sampling-based method that aggregates Shapley values computed from subsets for valuation of the entire training set, and 2) a value transfer method that leverages value information extracted from a simple classifier trained using representations from the target language model. Our experiments applying TS-DShapley to select data for fine-tuning BERT-based language models on benchmark natural language understanding (NLU) datasets show that TS-DShapley outperforms existing data selection methods. Further, TS-DShapley can filter fine-tuning data to increase language model performance compared to training with the full fine-tuning dataset.