Abstract:The performance of Large Language Models (LLMs) on natural language tasks can be improved through both supervised fine-tuning (SFT) and in-context learning (ICL), which operate via distinct mechanisms. Supervised fine-tuning updates the model's weights by minimizing loss on training data, whereas in-context learning leverages task demonstrations embedded in the prompt, without changing the model's parameters. This study investigates the effects of these learning paradigms on the hidden representations of LLMs using Intrinsic Dimension (ID). We use ID to estimate the number of degrees of freedom between representations extracted from LLMs as they perform specific natural language tasks. We first explore how the ID of LLM representations evolves during SFT and how it varies due to the number of demonstrations in ICL. We then compare the IDs induced by SFT and ICL and find that ICL consistently induces a higher ID compared to SFT, suggesting that representations generated during ICL reside in higher dimensional manifolds in the embedding space.
Abstract:Emergency Medical Services (EMS) responders often operate under time-sensitive conditions, facing cognitive overload and inherent risks, requiring essential skills in critical thinking and rapid decision-making. This paper presents CognitiveEMS, an end-to-end wearable cognitive assistant system that can act as a collaborative virtual partner engaging in the real-time acquisition and analysis of multimodal data from an emergency scene and interacting with EMS responders through Augmented Reality (AR) smart glasses. CognitiveEMS processes the continuous streams of data in real-time and leverages edge computing to provide assistance in EMS protocol selection and intervention recognition. We address key technical challenges in real-time cognitive assistance by introducing three novel components: (i) a Speech Recognition model that is fine-tuned for real-world medical emergency conversations using simulated EMS audio recordings, augmented with synthetic data generated by large language models (LLMs); (ii) an EMS Protocol Prediction model that combines state-of-the-art (SOTA) tiny language models with EMS domain knowledge using graph-based attention mechanisms; (iii) an EMS Action Recognition module which leverages multimodal audio and video data and protocol predictions to infer the intervention/treatment actions taken by the responders at the incident scene. Our results show that for speech recognition we achieve superior performance compared to SOTA (WER of 0.290 vs. 0.618) on conversational data. Our protocol prediction component also significantly outperforms SOTA (top-3 accuracy of 0.800 vs. 0.200) and the action recognition achieves an accuracy of 0.727, while maintaining an end-to-end latency of 3.78s for protocol prediction on the edge and 0.31s on the server.