Abstract:Emergency Medical Services (EMS) responders often operate under time-sensitive conditions, facing cognitive overload and inherent risks, requiring essential skills in critical thinking and rapid decision-making. This paper presents CognitiveEMS, an end-to-end wearable cognitive assistant system that can act as a collaborative virtual partner engaging in the real-time acquisition and analysis of multimodal data from an emergency scene and interacting with EMS responders through Augmented Reality (AR) smart glasses. CognitiveEMS processes the continuous streams of data in real-time and leverages edge computing to provide assistance in EMS protocol selection and intervention recognition. We address key technical challenges in real-time cognitive assistance by introducing three novel components: (i) a Speech Recognition model that is fine-tuned for real-world medical emergency conversations using simulated EMS audio recordings, augmented with synthetic data generated by large language models (LLMs); (ii) an EMS Protocol Prediction model that combines state-of-the-art (SOTA) tiny language models with EMS domain knowledge using graph-based attention mechanisms; (iii) an EMS Action Recognition module which leverages multimodal audio and video data and protocol predictions to infer the intervention/treatment actions taken by the responders at the incident scene. Our results show that for speech recognition we achieve superior performance compared to SOTA (WER of 0.290 vs. 0.618) on conversational data. Our protocol prediction component also significantly outperforms SOTA (top-3 accuracy of 0.800 vs. 0.200) and the action recognition achieves an accuracy of 0.727, while maintaining an end-to-end latency of 3.78s for protocol prediction on the edge and 0.31s on the server.
Abstract:Multi-label text classification (MLTC) tasks in the medical domain often face long-tail label distribution, where rare classes have fewer training samples than frequent classes. Although previous works have explored different model architectures and hierarchical label structures to find important features, most of them neglect to incorporate the domain knowledge from medical guidelines. In this paper, we present DKEC, Domain Knowledge Enhanced Classifier for medical diagnosis prediction with two innovations: (1) a label-wise attention mechanism that incorporates a heterogeneous graph and domain ontologies to capture the semantic relationships between medical entities, (2) a simple yet effective group-wise training method based on similarity of labels to increase samples of rare classes. We evaluate DKEC on two real-world medical datasets: the RAA dataset, a collection of 4,417 patient care reports from emergency medical services (EMS) incidents, and a subset of 53,898 reports from the MIMIC-III dataset. Experimental results show that our method outperforms the state-of-the-art, particularly for the few-shot (tail) classes. More importantly, we study the applicability of DKEC to different language models and show that DKEC can help the smaller language models achieve comparable performance to large language models.