Abstract:Despite the popularity of the `pre-train then fine-tune' paradigm in the NLP community, existing work quantifying energy costs and associated carbon emissions has largely focused on language model pre-training. Although a single pre-training run draws substantially more energy than fine-tuning, fine-tuning is performed more frequently by many more individual actors, and thus must be accounted for when considering the energy and carbon footprint of NLP. In order to better characterize the role of fine-tuning in the landscape of energy and carbon emissions in NLP, we perform a careful empirical study of the computational costs of fine-tuning across tasks, datasets, hardware infrastructure and measurement modalities. Our experimental results allow us to place fine-tuning energy and carbon costs into perspective with respect to pre-training and inference, and outline recommendations to NLP researchers and practitioners who wish to improve their fine-tuning energy efficiency.
Abstract:Pre-training is essential to deep learning model performance, especially in medical image analysis tasks where limited training data are available. However, existing pre-training methods are inflexible as the pre-trained weights of one model cannot be reused by other network architectures. In this paper, we propose an architecture-irrelevant hyper-initializer, which can initialize any given network architecture well after being pre-trained for only once. The proposed initializer is a hypernetwork which takes a downstream architecture as input graphs and outputs the initialization parameters of the respective architecture. We show the effectiveness and efficiency of the hyper-initializer through extensive experimental results on multiple medical imaging modalities, especially in data-limited fields. Moreover, we prove that the proposed algorithm can be reused as a favorable plug-and-play initializer for any downstream architecture and task (both classification and segmentation) of the same modality.
Abstract:Deep learning based medical imaging classification models usually suffer from the domain shift problem, where the classification performance drops when training data and real-world data differ in imaging equipment manufacturer, image acquisition protocol, patient populations, etc. We propose Feature Centroid Contrast Learning (FCCL), which can improve target domain classification performance by extra supervision during training with contrastive loss between instance and class centroid. Compared with current unsupervised domain adaptation and domain generalization methods, FCCL performs better while only requires labeled image data from a single source domain and no target domain. We verify through extensive experiments that FCCL can achieve superior performance on at least three imaging modalities, i.e. fundus photographs, dermatoscopic images, and H & E tissue images.