Abstract:Hierarchical reasoning model (HRM) achieves extraordinary performance on various reasoning tasks, significantly outperforming large language model-based reasoners. To understand the strengths and potential failure modes of HRM, we conduct a mechanistic study on its reasoning patterns and find three surprising facts: (a) Failure of extremely simple puzzles, e.g., HRM can fail on a puzzle with only one unknown cell. We attribute this failure to the violation of the fixed point property, a fundamental assumption of HRM. (b) "Grokking" dynamics in reasoning steps, i.e., the answer is not improved uniformly, but instead there is a critical reasoning step that suddenly makes the answer correct; (c) Existence of multiple fixed points. HRM "guesses" the first fixed point, which could be incorrect, and gets trapped there for a while or forever. All facts imply that HRM appears to be "guessing" instead of "reasoning". Leveraging this "guessing" picture, we propose three strategies to scale HRM's guesses: data augmentation (scaling the quality of guesses), input perturbation (scaling the number of guesses by leveraging inference randomness), and model bootstrapping (scaling the number of guesses by leveraging training randomness). On the practical side, by combining all methods, we develop Augmented HRM, boosting accuracy on Sudoku-Extreme from 54.5% to 96.9%. On the scientific side, our analysis provides new insights into how reasoning models "reason".
Abstract:Long-form generation is crucial for a wide range of practical applications, typically categorized into short-to-long and long-to-long generation. While short-to-long generations have received considerable attention, generating long texts from extremely long resources remains relatively underexplored. The primary challenge in long-to-long generation lies in effectively integrating and analyzing relevant information from extensive inputs, which remains difficult for current large language models (LLMs). In this paper, we propose LLM$\times$MapReduce-V2, a novel test-time scaling strategy designed to enhance the ability of LLMs to process extremely long inputs. Drawing inspiration from convolutional neural networks, which iteratively integrate local features into higher-level global representations, LLM$\times$MapReduce-V2 utilizes stacked convolutional scaling layers to progressively expand the understanding of input materials. Both quantitative and qualitative experimental results demonstrate that our approach substantially enhances the ability of LLMs to process long inputs and generate coherent, informative long-form articles, outperforming several representative baselines.