Abstract:In the realm of reinforcement learning (RL), accounting for risk is crucial for making decisions under uncertainty, particularly in applications where safety and reliability are paramount. In this paper, we introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation. Our framework covers a broad class of risk-sensitive RL, and facilitates analysis of the impact of estimation functions on the effectiveness of RSRL strategies and evaluation of their sample complexity. We design two innovative meta-algorithms: \texttt{RS-DisRL-M}, a model-based strategy for model-based function approximation, and \texttt{RS-DisRL-V}, a model-free approach for general value function approximation. With our novel estimation techniques via Least Squares Regression (LSR) and Maximum Likelihood Estimation (MLE) in distributional RL with augmented Markov Decision Process (MDP), we derive the first $\widetilde{\mathcal{O}}(\sqrt{K})$ dependency of the regret upper bound for RSRL with static LRM, marking a pioneering contribution towards statistically efficient algorithms in this domain.
Abstract:Learning Markov decision processes (MDP) in an adversarial environment has been a challenging problem. The problem becomes even more challenging with function approximation, since the underlying structure of the loss function and transition kernel are especially hard to estimate in a varying environment. In fact, the state-of-the-art results for linear adversarial MDP achieve a regret of $\tilde{O}(K^{6/7})$ ($K$ denotes the number of episodes), which admits a large room for improvement. In this paper, we investigate the problem with a new view, which reduces linear MDP into linear optimization by subtly setting the feature maps of the bandit arms of linear optimization. This new technique, under an exploratory assumption, yields an improved bound of $\tilde{O}(K^{4/5})$ for linear adversarial MDP without access to a transition simulator. The new view could be of independent interest for solving other MDP problems that possess a linear structure.