Abstract:Secure multi-party computation (MPC) enables computation directly on encrypted data on non-colluding untrusted servers and protects both data and model privacy in deep learning inference. However, existing neural network (NN) architectures, including Vision Transformers (ViTs), are not designed or optimized for MPC protocols and incur significant latency overhead due to the Softmax function in the multi-head attention (MHA). In this paper, we propose an MPC-friendly ViT, dubbed MPCViT, to enable accurate yet efficient ViT inference in MPC. We systematically compare different attention variants in MPC and propose a heterogeneous attention search space, which combines the high-accuracy and MPC-efficient attentions with diverse structure granularities. We further propose a simple yet effective differentiable neural architecture search (NAS) algorithm for fast ViT optimization. MPCViT significantly outperforms prior-art ViT variants in MPC. With the proposed NAS algorithm, our extensive experiments demonstrate that MPCViT achieves 7.9x and 2.8x latency reduction with better accuracy compared to Linformer and MPCFormer on the Tiny-ImageNet dataset, respectively. Further, with proper knowledge distillation (KD), MPCViT even achieves 1.9% better accuracy compared to the baseline ViT with 9.9x latency reduction on the Tiny-ImageNet dataset.
Abstract:Multi-Agent Reinforcement Learning (MARL) algorithms show amazing performance in simulation in recent years, but placing MARL in real-world applications may suffer safety problems. MARL with centralized shields was proposed and verified in safety games recently. However, centralized shielding approaches can be infeasible in several real-world multi-agent applications that involve non-cooperative agents or communication delay. Thus, we propose to combine MARL with decentralized Control Barrier Function (CBF) shields based on available local information. We establish a safe MARL framework with decentralized multiple CBFs and develop Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to Multi-Agent Deep Deterministic Policy Gradient with decentralized multiple Control Barrier Functions (MADDPG-CBF). Based on a collision-avoidance problem that includes not only cooperative agents but obstacles, we demonstrate the construction of multiple CBFs with safety guarantees in theory. Experiments are conducted and experiment results verify that the proposed safe MARL framework can guarantee the safety of agents included in MARL.
Abstract:Underwater robots in shallow waters usually suffer from strong wave forces, which may frequently exceed robot's control constraints. Learning-based controllers are suitable for disturbance rejection control, but the excessive disturbances heavily affect the state transition in Markov Decision Process (MDP) or Partially Observable Markov Decision Process (POMDP). Also, pure learning procedures on targeted system may encounter damaging exploratory actions or unpredictable system variations, and training exclusively on a prior model usually cannot address model mismatch from the targeted system. In this paper, we propose a transfer learning framework that adapts a control policy for excessive disturbance rejection of an underwater robot under dynamics model mismatch. A modular network of learning policies is applied, composed of a Generalized Control Policy (GCP) and an Online Disturbance Identification Model (ODI). GCP is first trained over a wide array of disturbance waveforms. ODI then learns to use past states and actions of the system to predict the disturbance waveforms which are provided as input to GCP (along with the system state). A transfer reinforcement learning algorithm using Transition Mismatch Compensation (TMC) is developed based on the modular architecture, that learns an additional compensatory policy through minimizing mismatch of transitions predicted by the two dynamics models of the source and target tasks. We demonstrated on a pose regulation task in simulation that TMC is able to successfully reject the disturbances and stabilize the robot under an empirical model of the robot system, meanwhile improve sample efficiency.
Abstract:Reinforcement Learning (RL) is limited in practice by its gray-box nature, which is responsible for insufficient trustiness from users, unsatisfied interpretation for human intervention, inadequate analysis for future improvement, etc. This paper seeks to partially characterize the interplay between dynamical environments and the DOB-net. The DOB-net obtained from RL solves a set of Partially Observable Markovian Decision Processes (POMDPs). The transition function of each POMDP is largely determined by the environments, which are excessive external disturbances in this research. This paper proposes an Attention-based Abstraction (A${}^2$) approach to extract a finite-state automaton, referred to as a Key Moore Machine Network (KMMN), to capture the switching mechanisms exhibited by the DOB-net in dealing with multiple such POMDPs. This approach first quantizes the controlled platform by learning continuous-discrete interfaces. Then it extracts the KMMN by finding the key hidden states and transitions that attract sufficient attention from the DOB-net. Within the resultant KMMN, this study found three patterns of cyclic switchings (between key hidden states), showing controls near their saturation are synchronized with unknown disturbances. Interestingly, the found switching mechanism has appeared previously in the design of hybrid control for often-saturated systems. It is further interpreted via an analogy to the discrete-event subsystem in the hybrid control.
Abstract:This paper presents an observer-integrated Reinforcement Learning (RL) approach, called Disturbance OBserver Network (DOB-Net), for robots operating in environments where disturbances are unknown and time-varying, and may frequently exceed robot control capabilities. The DOB-Net integrates a disturbance dynamics observer network and a controller network. Originated from classical DOB mechanisms, the observer is built and enhanced via Recurrent Neural Networks (RNNs), encoding estimation of past values and prediction of future values of unknown disturbances in RNN hidden state. Such encoding allows the controller generate optimal control signals to actively reject disturbances, under the constraints of robot control capabilities. The observer and the controller are jointly learned within policy optimization by advantage actor critic. Numerical simulations on position regulation tasks have demonstrated that the proposed DOB-Net significantly outperforms a canonical feedback controller and classical RL algorithms.