Abstract:Image demoiréing aims to remove structured moiré artifacts in recaptured imagery, where degradations are highly frequency-dependent and vary across scales and directions. While recent deep networks achieve high-quality restoration, their full-precision designs remain costly for deployment. Binarization offers an extreme compression regime by quantizing both activations and weights to 1-bit. Yet, it has been rarely studied for demoiréing and performs poorly when naively applied. In this work, we propose BinaryDemoire, a binarized demoiréing framework that explicitly accommodates the frequency structure of moiré degradations. First, we introduce a moiré-aware binary gate (MABG) that extracts lightweight frequency descriptors together with activation statistics. It predicts channel-wise gating coefficients to condition the aggregation of binary convolution responses. Second, we design a shuffle-grouped residual adapter (SGRA) that performs structured sparse shortcut alignment. It further integrates interleaved mixing to promote information exchange across different channel partitions. Extensive experiments on four benchmarks demonstrate that the proposed BinaryDemoire surpasses current binarization methods. Code: https://github.com/zhengchen1999/BinaryDemoire.
Abstract:Capturing display screens with mobile devices has become increasingly common, yet the resulting images often suffer from severe degradations caused by the coexistence of moiré patterns and flicker-banding, leading to significant visual quality degradation. Due to the strong coupling of these two artifacts in real imaging processes, existing methods designed for single degradations fail to generalize to such compound scenarios. In this paper, we present the first systematic study on joint removal of moiré patterns and flicker-banding in screen-captured images, and propose a unified restoration framework, named CLEAR. To support this task, we construct a large-scale dataset containing both moiré patterns and flicker-banding, and introduce an ISP-based flicker simulation pipeline to stabilize model training and expand the degradation distribution. Furthermore, we design a frequency-domain decomposition and re-composition module together with a trajectory alignment loss to enhance the modeling of compound artifacts. Extensive experiments demonstrate that the proposed method consistently. outperforms existing image restoration approaches across multiple evaluation metrics, validating its effectiveness in complex real-world scenarios.
Abstract:Mixture-of-Experts(MoE) Vision-Language Models (VLMs) offer remarkable performance but incur prohibitive memory and computational costs, making compression essential. Post-Training Quantization (PTQ) is an effective training-free technique to address the massive memory and computation overhead. Existing quantization paradigms fall short as they are oblivious to two critical forms of heterogeneity: the inherent discrepancy between vision and language tokens, and the non-uniform contribution of different experts. To bridge this gap, we propose Visual Expert Quantization (VEQ), a dual-aware quantization framework designed to simultaneously accommodate cross-modal differences and heterogeneity between experts. Specifically, VEQ incorporates 1)Modality-expert-aware Quantization, which utilizes expert activation frequency to prioritize error minimization for pivotal experts, and 2)Modality-affinity-aware Quantization, which constructs an enhanced Hessian matrix by integrating token-expert affinity with modality information to guide the calibration process. Extensive experiments across diverse benchmarks verify that VEQ consistently outperforms state-of-the-art baselines. Specifically, under the W3A16 configuration, our method achieves significant average accuracy gains of 2.04\% on Kimi-VL and 3.09\% on Qwen3-VL compared to the previous SOTA quantization methods, demonstrating superior robustness across various multimodal tasks. Our code will be available at https://github.com/guangshuoqin/VEQ.
Abstract:Current retinal foundation models remain constrained by curated research datasets that lack authentic clinical context, and require extensive task-specific optimization for each application, limiting their deployment efficiency in low-resource settings. Here, we show that these barriers can be overcome by building clinical native intelligence directly from real-world medical practice. Our key insight is that large-scale telemedicine programs, where expert centers provide remote consultations across distributed facilities, represent a natural reservoir for learning clinical image interpretation. We present ReVision, a retinal foundation model that learns from the natural alignment between 485,980 color fundus photographs and their corresponding diagnostic reports, accumulated through a decade-long telemedicine program spanning 162 medical institutions across China. Through extensive evaluation across 27 ophthalmic benchmarks, we demonstrate that ReVison enables deployment efficiency with minimal local resources. Without any task-specific training, ReVision achieves zero-shot disease detection with an average AUROC of 0.946 across 12 public benchmarks and 0.952 on 3 independent clinical cohorts. When minimal adaptation is feasible, ReVision matches extensively fine-tuned alternatives while requiring orders of magnitude fewer trainable parameters and labeled examples. The learned representations also transfer effectively to new clinical sites, imaging domains, imaging modalities, and systemic health prediction tasks. In a prospective reader study with 33 ophthalmologists, ReVision's zero-shot assistance improved diagnostic accuracy by 14.8% across all experience levels. These results demonstrate that clinical native intelligence can be directly extracted from clinical archives without any further annotation to build medical AI systems suited to various low-resource settings.
Abstract:Large-scale natural image-text datasets, especially those automatically collected from the web, often suffer from loose semantic alignment due to weak supervision, while medical datasets tend to have high cross-modal correlation but low content diversity. These properties pose a common challenge for contrastive language-image pretraining (CLIP): they hinder the model's ability to learn robust and generalizable representations. In this work, we propose CLIPin, a unified non-contrastive plug-in that can be seamlessly integrated into CLIP-style architectures to improve multimodal semantic alignment, providing stronger supervision and enhancing alignment robustness. Furthermore, two shared pre-projectors are designed for image and text modalities respectively to facilitate the integration of contrastive and non-contrastive learning in a parameter-compromise manner. Extensive experiments on diverse downstream tasks demonstrate the effectiveness and generality of CLIPin as a plug-and-play component compatible with various contrastive frameworks. Code is available at https://github.com/T6Yang/CLIPin.
Abstract:Standardization of clinical reports is crucial for improving the quality of healthcare and facilitating data integration. The lack of unified standards, including format, terminology, and style, is a great challenge in clinical fundus diagnostic reports, which increases the difficulty for large language models (LLMs) to understand the data. To address this, we construct a bilingual standard terminology, containing fundus clinical terms and commonly used descriptions in clinical diagnosis. Then, we establish two models, RetSTA-7B-Zero and RetSTA-7B. RetSTA-7B-Zero, fine-tuned on an augmented dataset simulating clinical scenarios, demonstrates powerful standardization behaviors. However, it encounters a challenge of limitation to cover a wider range of diseases. To further enhance standardization performance, we build RetSTA-7B, which integrates a substantial amount of standardized data generated by RetSTA-7B-Zero along with corresponding English data, covering diverse complex clinical scenarios and achieving report-level standardization for the first time. Experimental results demonstrate that RetSTA-7B outperforms other compared LLMs in bilingual standardization task, which validates its superior performance and generalizability. The checkpoints are available at https://github.com/AB-Story/RetSTA-7B.




Abstract:Remote sensing text--image retrieval (RSTIR) aims to retrieve the matched remote sensing (RS) images from the database according to the descriptive text. Recently, the rapid development of large visual-language pre-training models provides new insights for RSTIR. Nevertheless, as the complexity of models grows in RSTIR, the previous studies suffer from suboptimal resource efficiency during transfer learning. To address this issue, we propose a computation and memory-efficient retrieval (CMER) framework for RSTIR. To reduce the training memory consumption, we propose the Focus-Adapter module, which adopts a side branch structure. Its focus layer suppresses the interference of background pixels for small targets. Simultaneously, to enhance data efficacy, we regard the RS scene category as the metadata and design a concise augmentation technique. The scene label augmentation leverages the prior knowledge from land cover categories and shrinks the search space. We propose the negative sample recycling strategy to make the negative sample pool decoupled from the mini-batch size. It improves the generalization performance without introducing additional encoders. We have conducted quantitative and qualitative experiments on public datasets and expanded the benchmark with some advanced approaches, which demonstrates the competitiveness of the proposed CMER. Compared with the recent advanced methods, the overall retrieval performance of CMER is 2%--5% higher on RSITMD. Moreover, our proposed method reduces memory consumption by 49% and has a 1.4x data throughput during training. The code of the CMER and the dataset will be released at https://github.com/ZhangWeihang99/CMER.




Abstract:Subtle semantic differences in retinal image and text data present great challenges for pre-training visual-language models. Moreover, false negative samples, i.e., image-text pairs having the same semantics but incorrectly regarded as negatives, disrupt the visual-language pre-training process and affect the model's learning ability. This work aims to develop a retinal foundation model, called ViLReF, by pre-training on a paired dataset comprising 451,956 retinal images and corresponding diagnostic text reports. In our vision-language pre-training strategy, we leverage expert knowledge to facilitate the extraction of labels and propose a novel constraint, the Weighted Similarity Coupling Loss, to adjust the speed of pushing sample pairs further apart dynamically within the feature space. Furthermore, we employ a batch expansion module with dynamic memory queues, maintained by momentum encoders, to supply extra samples and compensate for the vacancies caused by eliminating false negatives. Extensive experiments are conducted on multiple datasets for downstream classification and segmentation tasks. The experimental results demonstrate the powerful zero-shot and transfer learning capabilities of ViLReF, verifying the effectiveness of our pre-training strategy. Our ViLReF model is available at: https://github.com/T6Yang/ViLReF.




Abstract:Image anomaly detection plays a pivotal role in industrial inspection. Traditional approaches often demand distinct models for specific categories, resulting in substantial deployment costs. This raises concerns about multi-class anomaly detection, where a unified model is developed for multiple classes. However, applying conventional methods, particularly reconstruction-based models, directly to multi-class scenarios encounters challenges such as identical shortcut learning, hindering effective discrimination between normal and abnormal instances. To tackle this issue, our study introduces the Prior Normality Prompt Transformer (PNPT) method for multi-class image anomaly detection. PNPT strategically incorporates normal semantics prompting to mitigate the "identical mapping" problem. This entails integrating a prior normality prompt into the reconstruction process, yielding a dual-stream model. This innovative architecture combines normal prior semantics with abnormal samples, enabling dual-stream reconstruction grounded in both prior knowledge and intrinsic sample characteristics. PNPT comprises four essential modules: Class-Specific Normality Prompting Pool (CS-NPP), Hierarchical Patch Embedding (HPE), Semantic Alignment Coupling Encoding (SACE), and Contextual Semantic Conditional Decoding (CSCD). Experimental validation on diverse benchmark datasets and real-world industrial applications highlights PNPT's superior performance in multi-class industrial anomaly detection.
Abstract:The Vision-Language Foundation model is increasingly investigated in the fields of computer vision and natural language processing, yet its exploration in ophthalmology and broader medical applications remains limited. The challenge is the lack of labeled data for the training of foundation model. To handle this issue, a CLIP-style retinal image foundation model is developed in this paper. Our foundation model, RET-CLIP, is specifically trained on a dataset of 193,865 patients to extract general features of color fundus photographs (CFPs), employing a tripartite optimization strategy to focus on left eye, right eye, and patient level to reflect real-world clinical scenarios. Extensive experiments demonstrate that RET-CLIP outperforms existing benchmarks across eight diverse datasets spanning four critical diagnostic categories: diabetic retinopathy, glaucoma, multiple disease diagnosis, and multi-label classification of multiple diseases, which demonstrate the performance and generality of our foundation model. The sourse code and pre-trained model are available at https://github.com/sStonemason/RET-CLIP.