Abstract:Medical procedures such as venipuncture and cannulation are essential for nurses and require precise skills. Learning this skill, in turn, is a challenge for educators due to the number of teachers per class and the complexity of the task. The study aims to help students with skill acquisition and alleviate the educator's workload by integrating generative AI methods to provide real-time feedback on medical procedures such as venipuncture and cannulation.
Abstract:Human Activity Recognition is a longstanding problem in AI with applications in a broad range of areas: from healthcare, sports and fitness, security, and human computer interaction to robotics. The performance of HAR in real-world settings is strongly dependent on the type and quality of the input signal that can be acquired. Given an unobstructed, high-quality camera view of a scene, computer vision systems, in particular in conjunction with foundational models (e.g., CLIP), can today fairly reliably distinguish complex activities. On the other hand, recognition using modalities such as wearable sensors (which are often more broadly available, e.g, in mobile phones and smartwatches) is a more difficult problem, as the signals often contain less information and labeled training data is more difficult to acquire. In this work, we show how we can improve HAR performance across different modalities using multimodal contrastive pretraining. Our approach MuJo (Multimodal Joint Feature Space Learning), learns a multimodal joint feature space with video, language, pose, and IMU sensor data. The proposed approach combines contrastive and multitask learning methods and analyzes different multitasking strategies for learning a compact shared representation. A large dataset with parallel video, language, pose, and sensor data points is also introduced to support the research, along with an analysis of the robustness of the multimodal joint space for modal-incomplete and low-resource data. On the MM-Fit dataset, our model achieves an impressive Macro F1-Score of up to 0.992 with only 2% of the train data and 0.999 when using all available training data for classification tasks. Moreover, in the scenario where the MM-Fit dataset is unseen, we demonstrate a generalization performance of up to 0.638.
Abstract:Due to the scarcity of labeled sensor data in HAR, prior research has turned to video data to synthesize Inertial Measurement Units (IMU) data, capitalizing on its rich activity annotations. However, generating IMU data from videos presents challenges for HAR in real-world settings, attributed to the poor quality of synthetic IMU data and its limited efficacy in subtle, fine-grained motions. In this paper, we propose Multi$^3$Net, our novel multi-modal, multitask, and contrastive-based framework approach to address the issue of limited data. Our pretraining procedure uses videos from online repositories, aiming to learn joint representations of text, pose, and IMU simultaneously. By employing video data and contrastive learning, our method seeks to enhance wearable HAR performance, especially in recognizing subtle activities.Our experimental findings validate the effectiveness of our approach in improving HAR performance with IMU data. We demonstrate that models trained with synthetic IMU data generated from videos using our method surpass existing approaches in recognizing fine-grained activities.
Abstract:In human activity recognition (HAR), the availability of substantial ground truth is necessary for training efficient models. However, acquiring ground pressure data through physical sensors itself can be cost-prohibitive, time-consuming. To address this critical need, we introduce Text-to-Pressure (T2P), a framework designed to generate extensive ground pressure sequences from textual descriptions of human activities using deep learning techniques. We show that the combination of vector quantization of sensor data along with simple text conditioned auto regressive strategy allows us to obtain high-quality generated pressure sequences from textual descriptions with the help of discrete latent correlation between text and pressure maps. We achieved comparable performance on the consistency between text and generated motion with an R squared value of 0.722, Masked R squared value of 0.892, and FID score of 1.83. Additionally, we trained a HAR model with the the synthesized data and evaluated it on pressure dynamics collected by a real pressure sensor which is on par with a model trained on only real data. Combining both real and synthesized training data increases the overall macro F1 score by 5.9 percent.
Abstract:Machine learning algorithms are improving rapidly, but annotating training data remains a bottleneck for many applications. In this paper, we show how real data can be used for self-supervised learning without any transformations by taking advantage of the symmetry present in the activities. Our approach involves contrastive matching of two different sensors (left and right wrist or leg-worn IMUs) to make representations of co-occurring sensor data more similar and those of non-co-occurring sensor data more different. We test our approach on the Opportunity and MM-Fit datasets. In MM-Fit we show significant improvement over the baseline supervised and self-supervised method SimCLR, while for Opportunity there is significant improvement over the supervised baseline and slight improvement when compared to SimCLR. Moreover, our method improves supervised baselines even when using only a small amount of the data for training. Future work should explore under which conditions our method is beneficial for human activity recognition systems and other related applications.
Abstract:Manufacturing industries strive to improve production efficiency and product quality by deploying advanced sensing and control systems. Wearable sensors are emerging as a promising solution for achieving this goal, as they can provide continuous and unobtrusive monitoring of workers' activities in the manufacturing line. This paper presents a novel wearable sensing prototype that combines IMU and body capacitance sensing modules to recognize worker activities in the manufacturing line. To handle these multimodal sensor data, we propose and compare early, and late sensor data fusion approaches for multi-channel time-series convolutional neural networks and deep convolutional LSTM. We evaluate the proposed hardware and neural network model by collecting and annotating sensor data using the proposed sensing prototype and Apple Watches in the testbed of the manufacturing line. Experimental results demonstrate that our proposed methods achieve superior performance compared to the baseline methods, indicating the potential of the proposed approach for real-world applications in manufacturing industries. Furthermore, the proposed sensing prototype with a body capacitive sensor and feature fusion method improves by 6.35%, yielding a 9.38% higher macro F1 score than the proposed sensing prototype without a body capacitive sensor and Apple Watch data, respectively.
Abstract:We propose PressureTransferNet, a novel method for Human Activity Recognition (HAR) using ground pressure information. Our approach generates body-specific dynamic ground pressure profiles for specific activities by leveraging existing pressure data from different individuals. PressureTransferNet is an encoder-decoder model taking a source pressure map and a target human attribute vector as inputs, producing a new pressure map reflecting the target attribute. To train the model, we use a sensor simulation to create a diverse dataset with various human attributes and pressure profiles. Evaluation on a real-world dataset shows its effectiveness in accurately transferring human attributes to ground pressure profiles across different scenarios. We visually confirm the fidelity of the synthesized pressure shapes using a physics-based deep learning model and achieve a binary R-square value of 0.79 on areas with ground contact. Validation through classification with F1 score (0.911$\pm$0.015) on physical pressure mat data demonstrates the correctness of the synthesized pressure maps, making our method valuable for data augmentation, denoising, sensor simulation, and anomaly detection. Applications span sports science, rehabilitation, and bio-mechanics, contributing to the development of HAR systems.
Abstract:Recently self-supervised learning has been proposed in the field of human activity recognition as a solution to the labelled data availability problem. The idea being that by using pretext tasks such as reconstruction or contrastive predictive coding, useful representations can be learned that then can be used for classification. Those approaches follow the pretrain, freeze and fine-tune procedure. In this paper we will show how a simple change - not freezing the representation - leads to substantial performance gains across pretext tasks. The improvement was found in all four investigated datasets and across all four pretext tasks and is inversely proportional to amount of labelled data. Moreover the effect is present whether the pretext task is carried on the Capture24 dataset or directly in unlabelled data of the target dataset.
Abstract:Recognizing human activities from sensor data is a vital task in various domains, but obtaining diverse and labeled sensor data remains challenging and costly. In this paper, we propose an unsupervised statistical feature-guided diffusion model for sensor-based human activity recognition. The proposed method aims to generate synthetic time-series sensor data without relying on labeled data, addressing the scarcity and annotation difficulties associated with real-world sensor data. By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data. We conducted experiments on public human activity recognition datasets and compared the proposed method to conventional oversampling methods and state-of-the-art generative adversarial network methods. The experimental results demonstrate that the proposed method can improve the performance of human activity recognition and outperform existing techniques.
Abstract:In this work, we propose an open-source scalable end-to-end RTL framework FieldHAR, for complex human activity recognition (HAR) from heterogeneous sensors using artificial neural networks (ANN) optimized for FPGA or ASIC integration. FieldHAR aims to address the lack of apparatus to transform complex HAR methodologies often limited to offline evaluation to efficient run-time edge applications. The framework uses parallel sensor interfaces and integer-based multi-branch convolutional neural networks (CNNs) to support flexible modality extensions with synchronous sampling at the maximum rate of each sensor. To validate the framework, we used a sensor-rich kitchen scenario HAR application which was demonstrated in a previous offline study. Through resource-aware optimizations, with FieldHAR the entire RTL solution was created from data acquisition to ANN inference taking as low as 25\% logic elements and 2\% memory bits of a low-end Cyclone IV FPGA and less than 1\% accuracy loss from the original FP32 precision offline study. The RTL implementation also shows advantages over MCU-based solutions, including superior data acquisition performance and virtually eliminating ANN inference bottleneck.