https://github.com/zhaxidele/Toolkit-for-HBC-sensing}.
While human body capacitance ($HBC$) has been explored as a novel wearable motion sensing modality, its competence has never been quantitatively demonstrated compared to that of the dominant inertial measurement unit ($IMU$) in practical scenarios. This work is thus motivated to evaluate the contribution of $HBC$ in wearable motion sensing. A real-life case study, gym workout tracking, is described to assess the effectiveness of $HBC$ as a complement to $IMU$ in activity recognition. Fifty gym sessions from ten volunteers were collected, bringing a fifty-hour annotated $IMU$ and $HBC$ dataset. With a hybrid CNN-Dilated neural network model empowered with the self-attention mechanism, $HBC$ slightly improves accuracy to the $IMU$ for workout recognition and has substantial advantages over $IMU$ for repetition counting. This work helps to enhance the understanding of $HBC$, a novel wearable motion-sensing modality based on the body-area electrostatic field. All materials presented in this work are open-sourced to promote further study \footnote{