Abstract:Supervised machine learning often operates on the data-driven paradigm, wherein internal model parameters are autonomously optimized to converge predicted outputs with the ground truth, devoid of explicitly programming rules or a priori assumptions. Although data-driven methods have yielded notable successes across various benchmark datasets, they inherently treat models as opaque entities, thereby limiting their interpretability and yielding a lack of explanatory insights into their decision-making processes. In this work, we introduce Latent Boost, a novel approach that integrates advanced distance metric learning into supervised classification tasks, enhancing both interpretability and training efficiency. Thus during training, the model is not only optimized for classification metrics of the discrete data points but also adheres to the rule that the collective representation zones of each class should be sharply clustered. By leveraging the rich structural insights of intermediate model layer latent representations, Latent Boost improves classification interpretability, as demonstrated by higher Silhouette scores, while accelerating training convergence. These performance and latent structural benefits are achieved with minimum additional cost, making it broadly applicable across various datasets without requiring data-specific adjustments. Furthermore, Latent Boost introduces a new paradigm for aligning classification performance with improved model transparency to address the challenges of black-box models.
Abstract:Artificial Intelligence (AI) methods are powerful tools for various domains, including critical fields such as avionics, where certification is required to achieve and maintain an acceptable level of safety. General solutions for safety-critical systems must address three main questions: Is it suitable? What drives the system's decisions? Is it robust to errors/attacks? This is more complex in AI than in traditional methods. In this context, this paper presents a comprehensive mind map of formal AI certification in avionics. It highlights the challenges of certifying AI development with an example to emphasize the need for qualification beyond performance metrics.
Abstract:In the human activity recognition research area, prior studies predominantly concentrate on leveraging advanced algorithms on public datasets to enhance recognition performance, little attention has been paid to executing real-time kitchen activity recognition on energy-efficient, cost-effective edge devices. Besides, the prevalent approach of segregating data collection and context extraction across different devices escalates power usage, latency, and user privacy risks, impeding widespread adoption. This work presents a multi-modal wearable edge computing system for human activity recognition in real-time. Integrating six different sensors, ranging from inertial measurement units (IMUs) to thermal cameras, and two different microcontrollers, this system achieves end-to-end activity recognition, from data capture to context extraction, locally. Evaluation in an unmodified realistic kitchen validates its efficacy in recognizing fifteen activities, including a null class. Employing a compact machine learning model (184.5 kbytes) yields an average accuracy of 87.83 \%, with model inference completed in 25.26 ms on the microcontroller. Comparative analysis with alternative microcontrollers showcases power consumption and inference speed performance, demonstrating the proposed system's viability.
Abstract:Despite the widespread integration of ambient light sensors (ALS) in smart devices commonly used for screen brightness adaptation, their application in human activity recognition (HAR), primarily through body-worn ALS, is largely unexplored. In this work, we developed ALS-HAR, a robust wearable light-based motion activity classifier. Although ALS-HAR achieves comparable accuracy to other modalities, its natural sensitivity to external disturbances, such as changes in ambient light, weather conditions, or indoor lighting, makes it challenging for daily use. To address such drawbacks, we introduce strategies to enhance environment-invariant IMU-based activity classifications through augmented multi-modal and contrastive classifications by transferring the knowledge extracted from the ALS. Our experiments on a real-world activity dataset for three different scenarios demonstrate that while ALS-HAR's accuracy strongly relies on external lighting conditions, cross-modal information can still improve other HAR systems, such as IMU-based classifiers.Even in scenarios where ALS performs insufficiently, the additional knowledge enables improved accuracy and macro F1 score by up to 4.2 % and 6.4 %, respectively, for IMU-based classifiers and even surpasses multi-modal sensor fusion models in two of our three experiment scenarios. Our research highlights the untapped potential of ALS integration in advancing sensor-based HAR technology, paving the way for practical and efficient wearable ALS-based activity recognition systems with potential applications in healthcare, sports monitoring, and smart indoor environments.
Abstract:In this work, we explore the use of a novel neural network architecture, the Kolmogorov-Arnold Networks (KANs) as feature extractors for sensor-based (specifically IMU) Human Activity Recognition (HAR). Where conventional networks perform a parameterized weighted sum of the inputs at each node and then feed the result into a statically defined nonlinearity, KANs perform non-linear computations represented by B-SPLINES on the edges leading to each node and then just sum up the inputs at the node. Instead of learning weights, the system learns the spline parameters. In the original work, such networks have been shown to be able to more efficiently and exactly learn sophisticated real valued functions e.g. in regression or PDE solution. We hypothesize that such an ability is also advantageous for computing low-level features for IMU-based HAR. To this end, we have implemented KAN as the feature extraction architecture for IMU-based human activity recognition tasks, including four architecture variations. We present an initial performance investigation of the KAN feature extractor on four public HAR datasets. It shows that the KAN-based feature extractor outperforms CNN-based extractors on all datasets while being more parameter efficient.
Abstract:This work proposes an incremental learning (IL) framework for wearable sensor human activity recognition (HAR) that tackles two challenges simultaneously: catastrophic forgetting and non-uniform inputs. The scalable framework, iKAN, pioneers IL with Kolmogorov-Arnold Networks (KAN) to replace multi-layer perceptrons as the classifier that leverages the local plasticity and global stability of splines. To adapt KAN for HAR, iKAN uses task-specific feature branches and a feature redistribution layer. Unlike existing IL methods that primarily adjust the output dimension or the number of classifier nodes to adapt to new tasks, iKAN focuses on expanding the feature extraction branches to accommodate new inputs from different sensor modalities while maintaining consistent dimensions and the number of classifier outputs. Continual learning across six public HAR datasets demonstrated the iKAN framework's incremental learning performance, with a last performance of 84.9\% (weighted F1 score) and an average incremental performance of 81.34\%, which significantly outperforms the two existing incremental learning methods, such as EWC (51.42\%) and experience replay (59.92\%).
Abstract:Due to the fact that roughly sixty percent of the human body is essentially composed of water, the human body is inherently a conductive object, being able to, firstly, form an inherent electric field from the body to the surroundings and secondly, deform the distribution of an existing electric field near the body. Body-area capacitive sensing, also called body-area electric field sensing, is becoming a promising alternative for wearable devices to accomplish certain tasks in human activity recognition and human-computer interaction. Over the last decade, researchers have explored plentiful novel sensing systems backed by the body-area electric field. On the other hand, despite the pervasive exploration of the body-area electric field, a comprehensive survey does not exist for an enlightening guideline. Moreover, the various hardware implementations, applied algorithms, and targeted applications result in a challenging task to achieve a systematic overview of the subject. This paper aims to fill in the gap by comprehensively summarizing the existing works on body-area capacitive sensing so that researchers can have a better view of the current exploration status. To this end, we first sorted the explorations into three domains according to the involved body forms: body-part electric field, whole-body electric field, and body-to-body electric field, and enumerated the state-of-art works in the domains with a detailed survey of the backed sensing tricks and targeted applications. We then summarized the three types of sensing frontends in circuit design, which is the most critical part in body-area capacitive sensing, and analyzed the data processing pipeline categorized into three kinds of approaches. Finally, we described the challenges and outlooks of body-area electric sensing.
Abstract:This work examines the effects of variations in machine learning training regimes and learning paradigms on the corresponding energy consumption. While increasing data availability and innovation in high-performance hardware fuels the training of sophisticated models, it also supports the fading perception of energy consumption and carbon emission. Therefore, the goal of this work is to create awareness about the energy impact of general training parameters and processes, from learning rate over batch size to knowledge transfer. Multiple setups with different hyperparameter initializations are evaluated on two different hardware configurations to obtain meaningful results. Experiments on pretraining and multitask training are conducted on top of the baseline results to determine their potential towards sustainable machine learning.
Abstract:Recent advancements in Artificial Neural Networks have significantly improved human activity recognition using multiple time-series sensors. While employing numerous sensors with high-frequency sampling rates usually improves the results, it often leads to data inefficiency and unnecessary expansion of the ANN, posing a challenge for their practical deployment on edge devices. Addressing these issues, our work introduces a pragmatic framework for data-efficient utilization in HAR tasks, considering the optimization of both sensor modalities and sampling rate simultaneously. Central to our approach are the designed trainable parameters, termed 'Weight Scores,' which assess the significance of each sensor modality and sampling rate during the training phase. These scores guide the sensor modalities and sampling rate selection. The pruning method allows users to make a trade-off between computational budgets and performance by selecting the sensor modalities and sampling rates according to the weight score ranking. We tested our framework's effectiveness in optimizing sensor modality and sampling rate selection using three public HAR benchmark datasets. The results show that the sensor and sampling rate combination selected via CoSS achieves similar classification performance to configurations using the highest sampling rate with all sensors but at a reduced hardware cost.
Abstract:In this work, we propose an open-source scalable end-to-end RTL framework FieldHAR, for complex human activity recognition (HAR) from heterogeneous sensors using artificial neural networks (ANN) optimized for FPGA or ASIC integration. FieldHAR aims to address the lack of apparatus to transform complex HAR methodologies often limited to offline evaluation to efficient run-time edge applications. The framework uses parallel sensor interfaces and integer-based multi-branch convolutional neural networks (CNNs) to support flexible modality extensions with synchronous sampling at the maximum rate of each sensor. To validate the framework, we used a sensor-rich kitchen scenario HAR application which was demonstrated in a previous offline study. Through resource-aware optimizations, with FieldHAR the entire RTL solution was created from data acquisition to ANN inference taking as low as 25\% logic elements and 2\% memory bits of a low-end Cyclone IV FPGA and less than 1\% accuracy loss from the original FP32 precision offline study. The RTL implementation also shows advantages over MCU-based solutions, including superior data acquisition performance and virtually eliminating ANN inference bottleneck.