Abstract:Despite the remarkable progress in generative modelling, current diffusion models lack a quantitative approach to assess image quality. To address this limitation, we propose to estimate the pixel-wise aleatoric uncertainty during the sampling phase of diffusion models and utilise the uncertainty to improve the sample generation quality. The uncertainty is computed as the variance of the denoising scores with a perturbation scheme that is specifically designed for diffusion models. We then show that the aleatoric uncertainty estimates are related to the second-order derivative of the diffusion noise distribution. We evaluate our uncertainty estimation algorithm and the uncertainty-guided sampling on the ImageNet and CIFAR-10 datasets. In our comparisons with the related work, we demonstrate promising results in filtering out low quality samples. Furthermore, we show that our guided approach leads to better sample generation in terms of FID scores.
Abstract:The costly and time-consuming annotation process to produce large training sets for modelling semantic LiDAR segmentation methods has motivated the development of semi-supervised learning (SSL) methods. However, such SSL approaches often concentrate on employing consistency learning only for individual LiDAR representations. This narrow focus results in limited perturbations that generally fail to enable effective consistency learning. Additionally, these SSL approaches employ contrastive learning based on the sampling from a limited set of positive and negative embedding samples. This paper introduces a novel semi-supervised LiDAR semantic segmentation framework called ItTakesTwo (IT2). IT2 is designed to ensure consistent predictions from peer LiDAR representations, thereby improving the perturbation effectiveness in consistency learning. Furthermore, our contrastive learning employs informative samples drawn from a distribution of positive and negative embeddings learned from the entire training set. Results on public benchmarks show that our approach achieves remarkable improvements over the previous state-of-the-art (SOTA) methods in the field. The code is available at: https://github.com/yyliu01/IT2.
Abstract:In monocular depth estimation, unsupervised domain adaptation has recently been explored to relax the dependence on large annotated image-based depth datasets. However, this comes at the cost of training multiple models or requiring complex training protocols. We formulate unsupervised domain adaptation for monocular depth estimation as a consistency-based semi-supervised learning problem by assuming access only to the source domain ground truth labels. To this end, we introduce a pairwise loss function that regularises predictions on the source domain while enforcing perturbation consistency across multiple augmented views of the unlabelled target samples. Importantly, our approach is simple and effective, requiring only training of a single model in contrast to the prior work. In our experiments, we rely on the standard depth estimation benchmarks KITTI and NYUv2 to demonstrate state-of-the-art results compared to related approaches. Furthermore, we analyse the simplicity and effectiveness of our approach in a series of ablation studies. The code is available at \url{https://github.com/AmirMaEl/SemiSupMDE}.
Abstract:Neural architecture search automates the design of neural network architectures usually by exploring a large and thus complex architecture search space. To advance the architecture search, we present a graph diffusion-based NAS approach that uses discrete conditional graph diffusion processes to generate high-performing neural network architectures. We then propose a multi-conditioned classifier-free guidance approach applied to graph diffusion networks to jointly impose constraints such as high accuracy and low hardware latency. Unlike the related work, our method is completely differentiable and requires only a single model training. In our evaluations, we show promising results on six standard benchmarks, yielding novel and unique architectures at a fast speed, i.e. less than 0.2 seconds per architecture. Furthermore, we demonstrate the generalisability and efficiency of our method through experiments on ImageNet dataset.
Abstract:Besides interacting correctly with other vehicles, automated vehicles should also be able to react in a safe manner to vulnerable road users like pedestrians or cyclists. For a safe interaction between pedestrians and automated vehicles, the vehicle must be able to interpret the pedestrian's behavior. Common environment models do not contain information like body poses used to understand the pedestrian's intent. In this work, we propose an environment model that includes the position of the pedestrians as well as their pose information. We only use images from a monocular camera and the vehicle's localization data as input to our pedestrian environment model. We extract the skeletal information with a neural network human pose estimator from the image. Furthermore, we track the skeletons with a simple tracking algorithm based on the Hungarian algorithm and an ego-motion compensation. To obtain the 3D information of the position, we aggregate the data from consecutive frames in conjunction with the vehicle position. We demonstrate our pedestrian environment model on data generated with the CARLA simulator and the nuScenes dataset. Overall, we reach a relative position error of around 16% on both datasets.
Abstract:In monocular depth estimation, uncertainty estimation approaches mainly target the data uncertainty introduced by image noise. In contrast to prior work, we address the uncertainty due to lack of knowledge, which is relevant for the detection of data not represented by the training distribution, the so-called out-of-distribution (OOD) data. Motivated by anomaly detection, we propose to detect OOD images from an encoder-decoder depth estimation model based on the reconstruction error. Given the features extracted with the fixed depth encoder, we train an image decoder for image reconstruction using only in-distribution data. Consequently, OOD images result in a high reconstruction error, which we use to distinguish between in- and out-of-distribution samples. We built our experiments on the standard NYU Depth V2 and KITTI benchmarks as in-distribution data. Our post hoc method performs astonishingly well on different models and outperforms existing uncertainty estimation approaches without modifying the trained encoder-decoder depth estimation model.
Abstract:Generalisation of deep neural networks becomes vulnerable when distribution shifts are encountered between train (source) and test (target) domain data. Few-shot domain adaptation mitigates this issue by adapting deep neural networks pre-trained on the source domain to the target domain using a randomly selected and annotated support set from the target domain. This paper argues that randomly selecting the support set can be further improved for effectively adapting the pre-trained source models to the target domain. Alternatively, we propose SelectNAdapt, an algorithm to curate the selection of the target domain samples, which are then annotated and included in the support set. In particular, for the K-shot adaptation problem, we first leverage self-supervision to learn features of the target domain data. Then, we propose a per-class clustering scheme of the learned target domain features and select K representative target samples using a distance-based scoring function. Finally, we bring our selection setup towards a practical ground by relying on pseudo-labels for clustering semantically similar target domain samples. Our experiments show promising results on three few-shot domain adaptation benchmarks for image recognition compared to related approaches and the standard random selection.
Abstract:Despite the significant research efforts on trajectory prediction for automated driving, limited work exists on assessing the prediction reliability. To address this limitation we propose an approach that covers two sources of error, namely novel situations with out-of-distribution (OOD) detection and the complexity in in-distribution (ID) situations with uncertainty estimation. We introduce two modules next to an encoder-decoder network for trajectory prediction. Firstly, a Gaussian mixture model learns the probability density function of the ID encoder features during training, and then it is used to detect the OOD samples in regions of the feature space with low likelihood. Secondly, an error regression network is applied to the encoder, which learns to estimate the trajectory prediction error in supervised training. During inference, the estimated prediction error is used as the uncertainty. In our experiments, the combination of both modules outperforms the prior work in OOD detection and uncertainty estimation, on the Shifts robust trajectory prediction dataset by $2.8 \%$ and $10.1 \%$, respectively. The code is publicly available.
Abstract:While automotive radar sensors are widely adopted and have been used for automatic cruise control and collision avoidance tasks, their application outside of vehicles is still limited. As they have the ability to resolve multiple targets in 3D space, radars can also be used for improving environment perception. This application, however, requires a precise calibration, which is usually a time-consuming and labor-intensive task. We, therefore, present an approach for automated and geo-referenced extrinsic calibration of automotive radar sensors that is based on a novel hypothesis filtering scheme. Our method does not require external modifications of a vehicle and instead uses the location data obtained from automated vehicles. This location data is then combined with filtered sensor data to create calibration hypotheses. Subsequent filtering and optimization recovers the correct calibration. Our evaluation on data from a real testing site shows that our method can correctly calibrate infrastructure sensors in an automated manner, thus enabling cooperative driving scenarios.
Abstract:Model compression techniques reduce the computational load and memory consumption of deep neural networks. After the compression operation, e.g. parameter pruning, the model is normally fine-tuned on the original training dataset to recover from the performance drop caused by compression. However, the training data is not always available due to privacy issues or other factors. In this work, we present a data-free fine-tuning approach for pruning the backbone of deep neural networks. In particular, the pruned network backbone is trained with synthetically generated images, and our proposed intermediate supervision to mimic the unpruned backbone's output feature map. Afterwards, the pruned backbone can be combined with the original network head to make predictions. We generate synthetic images by back-propagating gradients to noise images while relying on L1-pruning for the backbone pruning. In our experiments, we show that our approach is task-independent due to pruning only the backbone. By evaluating our approach on 2D human pose estimation, object detection, and image classification, we demonstrate promising performance compared to the unpruned model. Our code is available at https://github.com/holzbock/dfbf.