Abstract:Artificial neuronal devices are the basic building blocks for neuromorphic computing systems, which have been motivated by realistic brain emulation. Aiming for these applications, various device concepts have been proposed to mimic the neuronal dynamics and functions. While till now, the artificial neuron devices with high efficiency, high stability and low power consumption are still far from practical application. Due to the special insulator-metal phase transition, Vanadium Dioxide (VO2) has been considered as an idea candidate for neuronal device fabrication. However, its intrinsic insulating state requires the VO2 neuronal device to be driven under large bias voltage, resulting in high power consumption and low frequency. Thus in the current study, we have addressed this challenge by preparing oxygen vacancies modulated VO2 film(VO2-x) and fabricating the VO2-x neuronal devices for Spiking Neural Networks (SNNs) construction. Results indicate the neuron devices can be operated under lower voltage with improved processing speed. The proposed VO2-x based back-propagation SNNs (BP-SNNs) system, trained with the MNIST dataset, demonstrates excellent accuracy in image recognition. Our study not only demonstrates the VO2-x based neurons and SNN system for practical application, but also offers an effective way to optimize the future neuromorphic computing systems by defect engineering strategy.
Abstract:In this paper, we develop a dynamic detection network (DDNet) based detector for multiple-input multiple-output (MIMO) systems. By constructing an improved DetNet (IDetNet) detector and the OAMPNet detector as two independent network branches, the DDNet detector performs sample-wise dynamic routing to adaptively select a better one between the IDetNet and the OAMPNet detectors for every samples under different system conditions. To avoid the prohibitive transmission overhead of dataset collection in centralized learning (CL), we propose the federated averaging (FedAve)-DDNet detector, where all raw data are kept at local clients and only locally trained model parameters are transmitted to the central server for aggregation. To further reduce the transmission overhead, we develop the federated gradient sparsification (FedGS)-DDNet detector by randomly sampling gradients with elaborately calculated probability when uploading gradients to the central server. Based on simulation results, the proposed DDNet detector consistently outperforms other detectors under all system conditions thanks to the sample-wise dynamic routing. Moreover, the federated DDNet detectors, especially the FedGS-DDNet detector, can reduce the transmission overhead by at least 25.7\% while maintaining satisfactory detection accuracy.
Abstract:Millimeter wave (mmWave) multi-user massive multi-input multi-output (MIMO) is a promising technique for the next generation communication systems. However, the hardware cost and power consumption grow significantly as the number of radio frequency (RF) components increases, which hampers the deployment of practical massive MIMO systems. To address this issue and further facilitate the commercialization of massive MIMO, mixed analog-to-digital converters (ADCs) architecture has been considered, where parts of conventionally assumed full-resolution ADCs are replaced by one-bit ADCs. In this paper, we first propose a deep learning-based (DL) joint pilot design and channel estimation method for mixed-ADCs mmWave massive MIMO. Specifically, we devise a pilot design neural network whose weights directly represent the optimized pilots, and develop a Runge-Kutta model-driven densely connected network as the channel estimator. Instead of randomly assigning the mixed-ADCs, we then design a novel antenna selection network for mixed-ADCs allocation to further improve the channel estimation accuracy. Moreover, we adopt an autoencoder-inspired end-to-end architecture to jointly optimize the pilot design, channel estimation and mixed-ADCs allocation networks. Simulation results show that the proposed DL-based methods have advantages over the traditional channel estimators as well as the state-of-the-art networks.
Abstract:In this paper, we consider a massive multiple-input-multiple-output (MIMO) downlink system that improves the hardware efficiency by dynamically selecting the antenna subarray and utilizing 1-bit phase shifters for hybrid beamforming. To maximize the spectral efficiency, we propose a novel deep unsupervised learning-based approach that avoids the computationally prohibitive process of acquiring training labels. The proposed design has its input as the channel matrix and consists of two convolutional neural networks (CNNs). To enable unsupervised training, the problem constraints are embedded in the neural networks: the first CNN adopts deep probabilistic sampling, while the second CNN features a quantization layer designed for 1-bit phase shifters. The two networks can be trained jointly without labels by sharing an unsupervised loss function. We next propose a phased training approach to promote the convergence of the proposed networks. Simulation results demonstrate the advantage of the proposed approach over conventional optimization-based algorithms in terms of both achieved rate and computational complexity.
Abstract:A critical bottleneck of massive multiple-input multiple-output (MIMO) system is the huge training overhead caused by downlink transmission, like channel estimation, downlink beamforming and covariance observation. In this paper, we propose to use the channel state information (CSI) of a small number of antennas to extrapolate the CSI of the other antennas and reduce the training overhead. Specifically, we design a deep neural network that we call an antenna domain extrapolation network (ADEN) that can exploit the correlation function among antennas. We then propose a deep learning (DL) based antenna selection network (ASN) that can select a limited antennas for optimizing the extrapolation, which is conventionally a type of combinatorial optimization and is difficult to solve. We trickly designed a constrained degradation algorithm to generate a differentiable approximation of the discrete antenna selection vector such that the back-propagation of the neural network can be guaranteed. Numerical results show that the proposed ADEN outperforms the traditional fully connected one, and the antenna selection scheme learned by ASN is much better than the trivially used uniform selection.