Abstract:Interactive virtual humanoid agent is a crucial interface with the physical world. A relatively complete humanoid agent first needs to have face and body, then possess both verbal and non-verbal (such as eye contact, facial expression, lip motion, gesture, and manipulation) abilities, and finally, it is capable of real-time duplex communication, e.g., the ability to actively interrupt conversations. Most prior systems typically only consider a subset of these elements, leaving a gap from realistic humanoid agent. In this work, we propose a real-time, duplex, interactive end-to-end network capable of modeling realistic agent behaviors, including speech, full-body movements for talking, responding, idling, and manipulation. This system is a multimodal model integrating audio and visual inputs, extended from a pre-trained large language model (LLM). We collect approximately 200,000 hours of audio, around 130,000 hours of video data, and about 20,000 alignment samples to build the model. The final model demonstrates capabilities that are difficult to achieve in previous systems, such as generalized object manipulation. This work performs a preliminary exploration of the end-to-end approach in this field, aiming to inspire further research towards scaling up.
Abstract:In this work, we present Semantic Gesticulator, a novel framework designed to synthesize realistic gestures accompanying speech with strong semantic correspondence. Semantically meaningful gestures are crucial for effective non-verbal communication, but such gestures often fall within the long tail of the distribution of natural human motion. The sparsity of these movements makes it challenging for deep learning-based systems, trained on moderately sized datasets, to capture the relationship between the movements and the corresponding speech semantics. To address this challenge, we develop a generative retrieval framework based on a large language model. This framework efficiently retrieves suitable semantic gesture candidates from a motion library in response to the input speech. To construct this motion library, we summarize a comprehensive list of commonly used semantic gestures based on findings in linguistics, and we collect a high-quality motion dataset encompassing both body and hand movements. We also design a novel GPT-based model with strong generalization capabilities to audio, capable of generating high-quality gestures that match the rhythm of speech. Furthermore, we propose a semantic alignment mechanism to efficiently align the retrieved semantic gestures with the GPT's output, ensuring the naturalness of the final animation. Our system demonstrates robustness in generating gestures that are rhythmically coherent and semantically explicit, as evidenced by a comprehensive collection of examples. User studies confirm the quality and human-likeness of our results, and show that our system outperforms state-of-the-art systems in terms of semantic appropriateness by a clear margin.
Abstract:In this work, we present MoConVQ, a novel unified framework for physics-based motion control leveraging scalable discrete representations. Building upon vector quantized variational autoencoders (VQ-VAE) and model-based reinforcement learning, our approach effectively learns motion embeddings from a large, unstructured dataset spanning tens of hours of motion examples. The resultant motion representation not only captures diverse motion skills but also offers a robust and intuitive interface for various applications. We demonstrate the versatility of MoConVQ through several applications: universal tracking control from various motion sources, interactive character control with latent motion representations using supervised learning, physics-based motion generation from natural language descriptions using the GPT framework, and, most interestingly, seamless integration with large language models (LLMs) with in-context learning to tackle complex and abstract tasks.
Abstract:How to automatically synthesize natural-looking dance movements based on a piece of music is an incrementally popular yet challenging task. Most existing data-driven approaches require hard-to-get paired training data and fail to generate long sequences of motion due to error accumulation of autoregressive structure. We present a novel 3D dance synthesis system that only needs unpaired data for training and could generate realistic long-term motions at the same time. For the unpaired data training, we explore the disentanglement of beat and style, and propose a Transformer-based model free of reliance upon paired data. For the synthesis of long-term motions, we devise a new long-history attention strategy. It first queries the long-history embedding through an attention computation and then explicitly fuses this embedding into the generation pipeline via multimodal adaptation gate (MAG). Objective and subjective evaluations show that our results are comparable to strong baseline methods, despite not requiring paired training data, and are robust when inferring long-term music. To our best knowledge, we are the first to achieve unpaired data training - an ability that enables to alleviate data limitations effectively. Our code is released on https://github.com/BFeng14/RobustDancer
Abstract:The automatic generation of stylized co-speech gestures has recently received increasing attention. Previous systems typically allow style control via predefined text labels or example motion clips, which are often not flexible enough to convey user intent accurately. In this work, we present GestureDiffuCLIP, a neural network framework for synthesizing realistic, stylized co-speech gestures with flexible style control. We leverage the power of the large-scale Contrastive-Language-Image-Pre-training (CLIP) model and present a novel CLIP-guided mechanism that extracts efficient style representations from multiple input modalities, such as a piece of text, an example motion clip, or a video. Our system learns a latent diffusion model to generate high-quality gestures and infuses the CLIP representations of style into the generator via an adaptive instance normalization (AdaIN) layer. We further devise a gesture-transcript alignment mechanism that ensures a semantically correct gesture generation based on contrastive learning. Our system can also be extended to allow fine-grained style control of individual body parts. We demonstrate an extensive set of examples showing the flexibility and generalizability of our model to a variety of style descriptions. In a user study, we show that our system outperforms the state-of-the-art approaches regarding human likeness, appropriateness, and style correctness.
Abstract:Automatic synthesis of realistic co-speech gestures is an increasingly important yet challenging task in artificial embodied agent creation. Previous systems mainly focus on generating gestures in an end-to-end manner, which leads to difficulties in mining the clear rhythm and semantics due to the complex yet subtle harmony between speech and gestures. We present a novel co-speech gesture synthesis method that achieves convincing results both on the rhythm and semantics. For the rhythm, our system contains a robust rhythm-based segmentation pipeline to ensure the temporal coherence between the vocalization and gestures explicitly. For the gesture semantics, we devise a mechanism to effectively disentangle both low- and high-level neural embeddings of speech and motion based on linguistic theory. The high-level embedding corresponds to semantics, while the low-level embedding relates to subtle variations. Lastly, we build correspondence between the hierarchical embeddings of the speech and the motion, resulting in rhythm- and semantics-aware gesture synthesis. Evaluations with existing objective metrics, a newly proposed rhythmic metric, and human feedback show that our method outperforms state-of-the-art systems by a clear margin.