Interactive virtual humanoid agent is a crucial interface with the physical world. A relatively complete humanoid agent first needs to have face and body, then possess both verbal and non-verbal (such as eye contact, facial expression, lip motion, gesture, and manipulation) abilities, and finally, it is capable of real-time duplex communication, e.g., the ability to actively interrupt conversations. Most prior systems typically only consider a subset of these elements, leaving a gap from realistic humanoid agent. In this work, we propose a real-time, duplex, interactive end-to-end network capable of modeling realistic agent behaviors, including speech, full-body movements for talking, responding, idling, and manipulation. This system is a multimodal model integrating audio and visual inputs, extended from a pre-trained large language model (LLM). We collect approximately 200,000 hours of audio, around 130,000 hours of video data, and about 20,000 alignment samples to build the model. The final model demonstrates capabilities that are difficult to achieve in previous systems, such as generalized object manipulation. This work performs a preliminary exploration of the end-to-end approach in this field, aiming to inspire further research towards scaling up.