Abstract:Large Language Models (LLMs) attempt to imitate human behavior by responding to humans in a way that pleases them, including by adhering to their values. However, humans come from diverse cultures with different values. It is critical to understand whether LLMs showcase different values to the user based on the stereotypical values of a user's known country. We prompt different LLMs with a series of advice requests based on 5 Hofstede Cultural Dimensions -- a quantifiable way of representing the values of a country. Throughout each prompt, we incorporate personas representing 36 different countries and, separately, languages predominantly tied to each country to analyze the consistency in the LLMs' cultural understanding. Through our analysis of the responses, we found that LLMs can differentiate between one side of a value and another, as well as understand that countries have differing values, but will not always uphold the values when giving advice, and fail to understand the need to answer differently based on different cultural values. Rooted in these findings, we present recommendations for training value-aligned and culturally sensitive LLMs. More importantly, the methodology and the framework developed here can help further understand and mitigate culture and language alignment issues with LLMs.
Abstract:In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people's belief in automated systems. It is also paramount to localize and bring users' attention to the specific problematic content, instead of providing simple blanket labels. In this paper, we present $\textit{ClaimVer, a human-centric framework}$ tailored to meet users' informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.
Abstract:As LLMs become more pervasive across various users and scenarios, identifying potential issues when using these models becomes essential. Examples include bias, inconsistencies, and hallucination. Although auditing the LLM for these problems is desirable, it is far from being easy or solved. An effective method is to probe the LLM using different versions of the same question. This could expose inconsistencies in its knowledge or operation, indicating potential for bias or hallucination. However, to operationalize this auditing method at scale, we need an approach to create those probes reliably and automatically. In this paper we propose an automatic and scalable solution, where one uses a different LLM along with human-in-the-loop. This approach offers verifiability and transparency, while avoiding circular reliance on the same LLMs, and increasing scientific rigor and generalizability. Specifically, we present a novel methodology with two phases of verification using humans: standardized evaluation criteria to verify responses, and a structured prompt template to generate desired probes. Experiments on a set of questions from TruthfulQA dataset show that we can generate a reliable set of probes from one LLM that can be used to audit inconsistencies in a different LLM. The criteria for generating and applying auditing probes is generalizable to various LLMs regardless of the underlying structure or training mechanism.
Abstract:As Large Language Models (LLMs) gain wider adoption in various contexts, it becomes crucial to ensure they are reasonably safe, consistent, and reliable for an application at hand. This may require probing or auditing them. Probing LLMs with varied iterations of a single question could reveal potential inconsistencies in their knowledge or functionality. However, a tool for performing such audits with simple workflow and low technical threshold is lacking. In this demo, we introduce "AuditLLM," a novel tool designed to evaluate the performance of various LLMs in a methodical way. AuditLLM's core functionality lies in its ability to test a given LLM by auditing it using multiple probes generated from a single question, thereby identifying any inconsistencies in the model's understanding or operation. A reasonably robust, reliable, and consistent LLM should output semantically similar responses for a question asked differently or by different people. Based on this assumption, AuditLLM produces easily interpretable results regarding the LLM's consistencies from a single question that the user enters. A certain level of inconsistency has been shown to be an indicator of potential bias, hallucinations, and other issues. One could then use the output of AuditLLM to further investigate issues with the aforementioned LLM. To facilitate demonstration and practical uses, AuditLLM offers two key modes: (1) Live mode which allows instant auditing of LLMs by analyzing responses to real-time queries; (2) Batch mode which facilitates comprehensive LLM auditing by processing multiple queries at once for in-depth analysis. This tool is beneficial for both researchers and general users, as it enhances our understanding of LLMs' capabilities in generating responses, using a standardized auditing platform.
Abstract:Deep neural networks (DNNs) have improved NLP tasks significantly, but training and maintaining such networks could be costly. Model compression techniques, such as, knowledge distillation (KD), have been proposed to address the issue; however, the compression process could be lossy. Motivated by this, our work investigates how a distilled student model differs from its teacher, if the distillation process causes any information losses, and if the loss follows a specific pattern. Our experiments aim to shed light on the type of tasks might be less or more sensitive to KD by reporting data points on the contribution of different factors, such as the number of layers or attention heads. Results such as ours could be utilized when determining effective and efficient configurations to achieve optimal information transfers between larger (teacher) and smaller (student) models.
Abstract:Training mixed-domain translation models is a complex task that demands tailored architectures and costly data preparation techniques. In this work, we leverage federated learning (FL) in order to tackle the problem. Our investigation demonstrates that with slight modifications in the training process, neural machine translation (NMT) engines can be easily adapted when an FL-based aggregation is applied to fuse different domains. Experimental results also show that engines built via FL are able to perform on par with state-of-the-art baselines that rely on centralized training techniques. We evaluate our hypothesis in the presence of five datasets with different sizes, from different domains, to translate from German into English and discuss how FL and NMT can mutually benefit from each other. In addition to providing benchmarking results on the union of FL and NMT, we also propose a novel technique to dynamically control the communication bandwidth by selecting impactful parameters during FL updates. This is a significant achievement considering the large size of NMT engines that need to be exchanged between FL parties.
Abstract:Training neural machine translation (NMT) models in federated learning (FL) settings could be inefficient both computationally and communication-wise, due to the large size of translation engines as well as the multiple rounds of updates required to train clients and a central server. In this paper, we explore how to efficiently build NMT models in an FL setup by proposing a novel solution. In order to reduce the communication overhead, out of all neural layers we only exchange what we term "Controller" layers. Controllers are a small number of additional neural components connected to our pre-trained architectures. These new components are placed in between original layers. They act as liaisons to communicate with the central server and learn minimal information that is sufficient enough to update clients. We evaluated the performance of our models on five datasets from different domains to translate from German into English. We noted that the models equipped with Controllers preform on par with those trained in a central and non-FL setting. In addition, we observed a substantial reduction in the communication traffic of the FL pipeline, which is a direct consequence of using Controllers. Based on our experiments, Controller-based models are ~6 times less expensive than their other peers. This reduction is significantly important when we consider the number of parameters in large models and it becomes even more critical when such parameters need to be exchanged for multiple rounds in FL settings.