Abstract:Many of the most popular graph neural networks fall into the category of message-passing neural networks (MPNNs). Famously, MPNNs' ability to distinguish between graphs is limited to graphs separable by the Weisfeiler-Lemann (WL) graph isomorphism test, and the strongest MPNNs, in terms of separation power, are WL-equivalent. Recently, it was shown that the quality of separation provided by standard WL-equivalent MPNN can be very low, resulting in WL-separable graphs being mapped to very similar, hardly distinguishable features. This paper addresses this issue by seeking bi-Lipschitz continuity guarantees for MPNNs. We demonstrate that, in contrast with standard summation-based MPNNs, which lack bi-Lipschitz properties, our proposed model provides a bi-Lipschitz graph embedding with respect to two standard graph metrics. Empirically, we show that our MPNN is competitive with standard MPNNs for several graph learning tasks and is far more accurate in over-squashing long-range tasks.
Abstract:We present the $\textit{Sliced Wasserstein Embedding}$ $\unicode{x2014}$ a novel method to embed multisets and distributions over $\mathbb{R}^d$ into Euclidean space. Our embedding is injective and approximately preserves the Sliced Wasserstein distance. Moreover, when restricted to multisets, it is bi-Lipschitz. We also prove that it is $\textit{impossible}$ to embed distributions over $\mathbb{R}^d$ into a Euclidean space in a bi-Lipschitz manner, even under the assumption that their support is bounded and finite. We demonstrate empirically that our embedding offers practical advantage in learning tasks over existing methods for handling multisets.
Abstract:The $k$-Weifeiler-Leman ($k$-WL) graph isomorphism test hierarchy is a common method for assessing the expressive power of graph neural networks (GNNs). Recently, the $2$-WL test was proven to be complete on weighted graphs which encode $3\mathrm{D}$ point cloud data. Consequently, GNNs whose expressive power is equivalent to the $2$-WL test are provably universal on point clouds. Yet, this result is limited to invariant continuous functions on point clouds. In this paper we extend this result in three ways: Firstly, we show that $2$-WL tests can be extended to point clouds which include both positions and velocity, a scenario often encountered in applications. Secondly, we show that PPGN (Maron et al., 2019) can simulate $2$-WL uniformly on all point clouds with low complexity. Finally, we show that a simple modification of this PPGN architecture can be used to obtain a universal equivariant architecture that can approximate all continuous equivariant functions uniformly. Building on our results, we develop our WeLNet architecture, which can process position-velocity pairs, compute functions fully equivariant to permutations and rigid motions, and is provably complete and universal. Remarkably, WeLNet is provably complete precisely in the setting in which it is implemented in practice. Our theoretical results are complemented by experiments showing WeLNet sets new state-of-the-art results on the N-Body dynamics task and the GEOM-QM9 molecular conformation generation task.
Abstract:Injective multiset functions have a key role in the theoretical study of machine learning on multisets and graphs. Yet, there remains a gap between the provably injective multiset functions considered in theory, which typically rely on polynomial moments, and the multiset functions used in practice which typically rely on $\textit{neural moments}$, whose injectivity on multisets has not been studied to date. In this paper we bridge this gap by showing that moments of neural network do define an injective multiset function, provided that an analytic non-polynomial activation is used. The number of moments required by our theory is optimal up to a multiplicative factor of two. To prove this result, we state and prove a $\textit{finite witness theorem}$, which is of independent interest. As a corollary to our main theorem, we derive new approximation results for functions on multisets and measures, and new separation results for graph neural networks. We also provide two negative results: We show that (1) moments of piecewise-linear neural networks do not lead to injective multiset functions, and (2) even when moment-based multiset functions are injective, they will never be bi-Lipschitz.
Abstract:We propose a 2-WL-like geometric graph isomorphism test and prove it is complete when applied to Euclidean Graphs in $\mathbb{R}^3$. We then use recent results on multiset embeddings to devise an efficient geometric GNN model with equivalent separation power. We verify empirically that our GNN model is able to separate particularly challenging synthetic examples, and demonstrate its usefulness for a chemical property prediction problem.
Abstract:The classical $\textit{Procrustes}$ problem is to find a rigid motion (orthogonal transformation and translation) that best aligns two given point-sets in the least-squares sense. The $\textit{Robust Procrustes}$ problem is an important variant, in which a power-1 objective is used instead of least squares to improve robustness to outliers. While the optimal solution of the least-squares problem can be easily computed in closed form, dating back to Sch\"onemann (1966), no such solution is known for the power-1 problem. In this paper we propose a novel convex relaxation for the Robust Procrustes problem. Our relaxation enjoys several theoretical and practical advantages: Theoretically, we prove that our method provides a $\sqrt{2}$-factor approximation to the Robust Procrustes problem, and that, under appropriate assumptions, it exactly recovers the true rigid motion from point correspondences contaminated by outliers. In practice, we find in numerical experiments on both synthetic and real robust Procrustes problems, that our method performs similarly to the standard Iteratively Reweighted Least Squares (IRLS). However the convexity of our algorithm allows incorporating additional convex penalties, which are not readily amenable to IRLS. This turns out to be a substantial advantage, leading to improved results in high-dimensional problems, including non-rigid shape alignment and semi-supervised interlingual word translation.
Abstract:We present a new approach to solve the sparse approximation or best subset selection problem, namely find a $k$-sparse vector ${\bf x}\in\mathbb{R}^d$ that minimizes the $\ell_2$ residual $\lVert A{\bf x}-{\bf y} \rVert_2$. We consider a regularized approach, whereby this residual is penalized by the non-convex $\textit{trimmed lasso}$, defined as the $\ell_1$-norm of ${\bf x}$ excluding its $k$ largest-magnitude entries. We prove that the trimmed lasso has several appealing theoretical properties, and in particular derive sparse recovery guarantees assuming successful optimization of the penalized objective. Next, we show empirically that directly optimizing this objective can be quite challenging. Instead, we propose a surrogate for the trimmed lasso, called the $\textit{generalized soft-min}$. This penalty smoothly interpolates between the classical lasso and the trimmed lasso, while taking into account all possible $k$-sparse patterns. The generalized soft-min penalty involves summation over $\binom{d}{k}$ terms, yet we derive a polynomial-time algorithm to compute it. This, in turn, yields a practical method for the original sparse approximation problem. Via simulations, we demonstrate its competitive performance compared to current state of the art.
Abstract:Accurate estimation of camera matrices is an important step in structure from motion algorithms. In this paper we introduce a novel rank constraint on collections of fundamental matrices in multi-view settings. We show that in general, with the selection of proper scale factors, a matrix formed by stacking fundamental matrices between pairs of images has rank 6. Moreover, this matrix forms the symmetric part of a rank 3 matrix whose factors relate directly to the corresponding camera matrices. We use this new characterization to produce better estimations of fundamental matrices by optimizing an L1-cost function using Iterative Re-weighted Least Squares and Alternate Direction Method of Multiplier. We further show that this procedure can improve the recovery of camera locations, particularly in multi-view settings in which fewer images are available.
Abstract:Finding correspondences in wide baseline setups is a challenging problem. Existing approaches have focused largely on developing better feature descriptors for correspondence and on accurate recovery of epipolar line constraints. This paper focuses on the challenging problem of finding correspondences once approximate epipolar constraints are given. We introduce a novel method that integrates a deformation model. Specifically, we formulate the problem as finding the largest number of corresponding points related by a bounded distortion map that obeys the given epipolar constraints. We show that, while the set of bounded distortion maps is not convex, the subset of maps that obey the epipolar line constraints is convex, allowing us to introduce an efficient algorithm for matching. We further utilize a robust cost function for matching and employ majorization-minimization for its optimization. Our experiments indicate that our method finds significantly more accurate maps than existing approaches.