Accurate estimation of camera matrices is an important step in structure from motion algorithms. In this paper we introduce a novel rank constraint on collections of fundamental matrices in multi-view settings. We show that in general, with the selection of proper scale factors, a matrix formed by stacking fundamental matrices between pairs of images has rank 6. Moreover, this matrix forms the symmetric part of a rank 3 matrix whose factors relate directly to the corresponding camera matrices. We use this new characterization to produce better estimations of fundamental matrices by optimizing an L1-cost function using Iterative Re-weighted Least Squares and Alternate Direction Method of Multiplier. We further show that this procedure can improve the recovery of camera locations, particularly in multi-view settings in which fewer images are available.