Abstract:Thanks to their extensive capacity, over-parameterized neural networks exhibit superior predictive capabilities and generalization. However, having a large parameter space is considered one of the main suspects of the neural networks' vulnerability to adversarial example -- input samples crafted ad-hoc to induce a desired misclassification. Relevant literature has claimed contradictory remarks in support of and against the robustness of over-parameterized networks. These contradictory findings might be due to the failure of the attack employed to evaluate the networks' robustness. Previous research has demonstrated that depending on the considered model, the algorithm employed to generate adversarial examples may not function properly, leading to overestimating the model's robustness. In this work, we empirically study the robustness of over-parameterized networks against adversarial examples. However, unlike the previous works, we also evaluate the considered attack's reliability to support the results' veracity. Our results show that over-parameterized networks are robust against adversarial attacks as opposed to their under-parameterized counterparts.
Abstract:Emotions have played an important part in many sectors, including psychology, medicine, mental health, computer science, and so on, and categorizing them has proven extremely useful in separating one emotion from another. Emotions can be classified using the following two methods: (1) The supervised method's efficiency is strongly dependent on the size and domain of the data collected. A categorization established using relevant data from one domain may not work well in another. (2) An unsupervised method that uses either domain expertise or a knowledge base of emotion types already exists. Though this second approach provides a suitable and generic categorization of emotions and is cost-effective, the literature doesn't possess a publicly available knowledge base that can be directly applied to any emotion categorization-related task. This pushes us to create a knowledge base that can be used for emotion classification across domains, and ontology is often used for this purpose. In this study, we provide TONE, an emotion-based ontology that effectively creates an emotional hierarchy based on Dr. Gerrod Parrot's group of emotions. In addition to ontology development, we introduce a semi-automated vocabulary construction process to generate a detailed collection of terms for emotions at each tier of the hierarchy. We also demonstrate automated methods for establishing three sorts of dependencies in order to develop linkages between different emotions. Our human and automatic evaluation results show the ontology's quality. Furthermore, we describe three distinct use cases that demonstrate the applicability of our ontology.
Abstract:Online social media platforms, such as Twitter, are one of the most valuable sources of information during disaster events. Therefore, humanitarian organizations, government agencies, and volunteers rely on a summary of this information, i.e., tweets, for effective disaster management. Although there are several existing supervised and unsupervised approaches for automated tweet summary approaches, these approaches either require extensive labeled information or do not incorporate specific domain knowledge of disasters. Additionally, the most recent approaches to disaster summarization have proposed BERT-based models to enhance the summary quality. However, for further improved performance, we introduce the utilization of domain-specific knowledge without any human efforts to understand the importance (salience) of a tweet which further aids in summary creation and improves summary quality. In this paper, we propose a disaster-specific tweet summarization framework, IKDSumm, which initially identifies the crucial and important information from each tweet related to a disaster through key-phrases of that tweet. We identify these key-phrases by utilizing the domain knowledge (using existing ontology) of disasters without any human intervention. Further, we utilize these key-phrases to automatically generate a summary of the tweets. Therefore, given tweets related to a disaster, IKDSumm ensures fulfillment of the summarization key objectives, such as information coverage, relevance, and diversity in summary without any human intervention. We evaluate the performance of IKDSumm with 8 state-of-the-art techniques on 12 disaster datasets. The evaluation results show that IKDSumm outperforms existing techniques by approximately 2-79% in terms of ROUGE-N F1-score.
Abstract:We propose a friend recommendation system (an application of link prediction) using edge embeddings on social networks. Most real-world social networks are multi-graphs, where different kinds of relationships (e.g. chat, friendship) are possible between a pair of users. Existing network embedding techniques do not leverage signals from different edge types and thus perform inadequately on link prediction in such networks. We propose a method to mine network representation that effectively exploits heterogeneity in multi-graphs. We evaluate our model on a real-world, active social network where this system is deployed for friend recommendation for millions of users. Our method outperforms various state-of-the-art baselines on Hike's social network in terms of accuracy as well as user satisfaction.