Abstract:Abstract Meaning Representation (AMR) is a semantic formalism that captures the core meaning of an utterance. There has been substantial work developing AMR corpora in English and more recently across languages, though the limited size of existing datasets and the cost of collecting more annotations are prohibitive. With both engineering and scientific questions in mind, we introduce MASSIVE-AMR, a dataset with more than 84,000 text-to-graph annotations, currently the largest and most diverse of its kind: AMR graphs for 1,685 information-seeking utterances mapped to 50+ typologically diverse languages. We describe how we built our resource and its unique features before reporting on experiments using large language models for multilingual AMR and SPARQL parsing as well as applying AMRs for hallucination detection in the context of knowledge base question answering, with results shedding light on persistent issues using LLMs for structured parsing.
Abstract:Large Language Models (LLMs) have become capable of generating highly fluent text in certain languages, without modules specially designed to capture grammar or semantic coherence. What does this mean for the future of linguistic expertise in NLP? We highlight several aspects in which NLP (still) relies on linguistics, or where linguistic thinking can illuminate new directions. We argue our case around the acronym $RELIES$ that encapsulates six major facets where linguistics contributes to NLP: $R$esources, $E$valuation, $L$ow-resource settings, $I$nterpretability, $E$xplanation, and the $S$tudy of language. This list is not exhaustive, nor is linguistics the main point of reference for every effort under these themes; but at a macro level, these facets highlight the enduring importance of studying machine systems vis-a-vis systems of human language.
Abstract:The task of natural language inference (NLI) asks whether a given premise (expressed in NL) entails a given NL hypothesis. NLI benchmarks contain human ratings of entailment, but the meaning relationships driving these ratings are not formalized. Can the underlying sentence pair relationships be made more explicit in an interpretable yet robust fashion? We compare semantic structures to represent premise and hypothesis, including sets of contextualized embeddings and semantic graphs (Abstract Meaning Representations), and measure whether the hypothesis is a semantic substructure of the premise, utilizing interpretable metrics. Our evaluation on three English benchmarks finds value in both contextualized embeddings and semantic graphs; moreover, they provide complementary signals, and can be leveraged together in a hybrid model.
Abstract:Translated texts or utterances bear several hallmarks distinct from texts originating in the language. This phenomenon, known as translationese, is well-documented, and when found in training or test sets can affect model performance. Still, work to mitigate the effect of translationese in human translated text is understudied. We hypothesize that Abstract Meaning Representation (AMR), a semantic representation which abstracts away from the surface form, can be used as an interlingua to reduce the amount of translationese in translated texts. By parsing English translations into an AMR graph and then generating text from that AMR, we obtain texts that more closely resemble non-translationese by macro-level measures. We show that across four metrics, and qualitatively, using AMR as an interlingua enables the reduction of translationese and we compare our results to two additional approaches: one based on round-trip machine translation and one based on syntactically controlled generation.
Abstract:Identifying semantically equivalent sentences is important for many cross-lingual and mono-lingual NLP tasks. Current approaches to semantic equivalence take a loose, sentence-level approach to "equivalence," despite previous evidence that fine-grained differences and implicit content have an effect on human understanding (Roth and Anthonio, 2021) and system performance (Briakou and Carpuat, 2021). In this work, we introduce a novel, more sensitive method of characterizing semantic equivalence that leverages Abstract Meaning Representation graph structures. We develop an approach, which can be used with either gold or automatic AMR annotations, and demonstrate that our solution is in fact finer-grained than existing corpus filtering methods and more accurate at predicting strictly equivalent sentences than existing semantic similarity metrics. We suggest that our finer-grained measure of semantic equivalence could limit the workload in the task of human post-edited machine translation and in human evaluation of sentence similarity.
Abstract:The Abstract Meaning Representation (AMR) formalism, designed originally for English, has been adapted to a number of languages. We build on previous work proposing the annotation of AMR in Spanish, which resulted in the release of 50 Spanish AMR annotations for the fictional text "The Little Prince." In this work, we present the first sizable, general annotation project for Spanish Abstract Meaning Representation. Our approach to annotation makes use of Spanish rolesets from the AnCora-Net lexicon and extends English AMR with semantic features specific to Spanish. In addition to our guidelines, we release an annotated corpus (586 annotations total, for 486 unique sentences) of multiple genres of documents from the "Abstract Meaning Representation 2.0 - Four Translations" sembank. This corpus is commonly used for evaluation of AMR parsing and generation, but does not include gold AMRs; we hope that providing gold annotations for this dataset can result in a more complete approach to cross-lingual AMR parsing. Finally, we perform a disagreement analysis and discuss the implications of our work on the adaptability of AMR to languages other than English.
Abstract:We present the Prepositions Annotated with Supersense Tags in Reddit International English ("PASTRIE") corpus, a new dataset containing manually annotated preposition supersenses of English data from presumed speakers of four L1s: English, French, German, and Spanish. The annotations are comprehensive, covering all preposition types and tokens in the sample. Along with the corpus, we provide analysis of distributional patterns across the included L1s and a discussion of the influence of L1s on L2 preposition choice.
Abstract:Prepositional supersense annotation is time-consuming and requires expert training. Here, we present two sensible methods for obtaining prepositional supersense annotations by eliciting surface substitution and similarity judgments. Four pilot studies suggest that both methods have potential for producing prepositional supersense annotations that are comparable in quality to expert annotations.
Abstract:Most current state-of-the art systems for generating English text from Abstract Meaning Representation (AMR) have been evaluated only using automated metrics, such as BLEU, which are known to be problematic for natural language generation. In this work, we present the results of a new human evaluation which collects fluency and adequacy scores, as well as categorization of error types, for several recent AMR generation systems. We discuss the relative quality of these systems and how our results compare to those of automatic metrics, finding that while the metrics are mostly successful in ranking systems overall, collecting human judgments allows for more nuanced comparisons. We also analyze common errors made by these systems.