Abstract:Summarization is an important application of large language models (LLMs). Most previous evaluation of summarization models has focused on their performance in content selection, grammaticality and coherence. However, it is well known that LLMs reproduce and reinforce harmful social biases. This raises the question: Do these biases affect model outputs in a relatively constrained setting like summarization? To help answer this question, we first motivate and introduce a number of definitions for biased behaviours in summarization models, along with practical measures to quantify them. Since we find biases inherent to the input document can confound our analysis, we additionally propose a method to generate input documents with carefully controlled demographic attributes. This allows us to sidestep this issue, while still working with somewhat realistic input documents. Finally, we apply our measures to summaries generated by both purpose-built summarization models and general purpose chat models. We find that content selection in single document summarization seems to be largely unaffected by bias, while hallucinations exhibit evidence of biases propagating to generated summaries.
Abstract:The task of natural language inference (NLI) asks whether a given premise (expressed in NL) entails a given NL hypothesis. NLI benchmarks contain human ratings of entailment, but the meaning relationships driving these ratings are not formalized. Can the underlying sentence pair relationships be made more explicit in an interpretable yet robust fashion? We compare semantic structures to represent premise and hypothesis, including sets of contextualized embeddings and semantic graphs (Abstract Meaning Representations), and measure whether the hypothesis is a semantic substructure of the premise, utilizing interpretable metrics. Our evaluation on three English benchmarks finds value in both contextualized embeddings and semantic graphs; moreover, they provide complementary signals, and can be leveraged together in a hybrid model.
Abstract:Conditional language models still generate unfaithful output that is not supported by their input. These unfaithful generations jeopardize trust in real-world applications such as summarization or human-machine interaction, motivating a need for automatic faithfulness metrics. To implement such metrics, NLI models seem attractive, since they solve a strongly related task that comes with a wealth of prior research and data. But recent research suggests that NLI models require costly additional machinery to perform reliably across datasets, e.g., by running inference on a cartesian product of input and generated sentences, or supporting them with a question-generation/answering step. In this work we show that pure NLI models _can_ outperform more complex metrics when combining task-adaptive data augmentation with robust inference procedures. We propose: (1) Augmenting NLI training data to adapt NL inferences to the specificities of faithfulness prediction in dialogue; (2) Making use of both entailment and contradiction probabilities in NLI, and (3) Using Monte-Carlo dropout during inference. Applied to the TRUE benchmark, which combines faithfulness datasets across diverse domains and tasks, our approach strongly improves a vanilla NLI model and significantly outperforms previous work, while showing favourable computational cost.
Abstract:Automatically evaluating the coherence of summaries is of great significance both to enable cost-efficient summarizer evaluation and as a tool for improving coherence by selecting high-scoring candidate summaries. While many different approaches have been suggested to model summary coherence, they are often evaluated using disparate datasets and metrics. This makes it difficult to understand their relative performance and identify ways forward towards better summary coherence modelling. In this work, we conduct a large-scale investigation of various methods for summary coherence modelling on an even playing field. Additionally, we introduce two novel analysis measures, intra-system correlation and bias matrices, that help identify biases in coherence measures and provide robustness against system-level confounders. While none of the currently available automatic coherence measures are able to assign reliable coherence scores to system summaries across all evaluation metrics, large-scale language models fine-tuned on self-supervised tasks show promising results, as long as fine-tuning takes into account that they need to generalize across different summary lengths.
Abstract:Manual evaluation is essential to judge progress on automatic text summarization. However, we conduct a survey on recent summarization system papers that reveals little agreement on how to perform such evaluation studies. We conduct two evaluation experiments on two aspects of summaries' linguistic quality (coherence and repetitiveness) to compare Likert-type and ranking annotations and show that best choice of evaluation method can vary from one aspect to another. In our survey, we also find that study parameters such as the overall number of annotators and distribution of annotators to annotation items are often not fully reported and that subsequent statistical analysis ignores grouping factors arising from one annotator judging multiple summaries. Using our evaluation experiments, we show that the total number of annotators can have a strong impact on study power and that current statistical analysis methods can inflate type I error rates up to eight-fold. In addition, we highlight that for the purpose of system comparison the current practice of eliciting multiple judgements per summary leads to less powerful and reliable annotations given a fixed study budget.