Abstract:Not all learnable parameters (e.g., weights) contribute equally to a neural network's decision function. In fact, entire layers' parameters can sometimes be reset to random values with little to no impact on the model's decisions. We revisit earlier studies that examined how architecture and task complexity influence this phenomenon and ask: is this phenomenon also affected by how we train the model? We conducted experimental evaluations on a diverse set of ImageNet-1k classification models to explore this, keeping the architecture and training data constant but varying the training pipeline. Our findings reveal that the training method strongly influences which layers become critical to the decision function for a given task. For example, improved training regimes and self-supervised training increase the importance of early layers while significantly under-utilizing deeper layers. In contrast, methods such as adversarial training display an opposite trend. Our preliminary results extend previous findings, offering a more nuanced understanding of the inner mechanics of neural networks. Code: https://github.com/paulgavrikov/layer_criticality
Abstract:Image restoration networks are usually comprised of an encoder and a decoder, responsible for aggregating image content from noisy, distorted data and to restore clean, undistorted images, respectively. Data aggregation as well as high-resolution image generation both usually come at the risk of involving aliases, i.e.~standard architectures put their ability to reconstruct the model input in jeopardy to reach high PSNR values on validation data. The price to be paid is low model robustness. In this work, we show that simply providing alias-free paths in state-of-the-art reconstruction transformers supports improved model robustness at low costs on the restoration performance. We do so by proposing BOA-Restormer, a transformer-based image restoration model that executes downsampling and upsampling operations partly in the frequency domain to ensure alias-free paths along the entire model while potentially preserving all relevant high-frequency information.
Abstract:State-of-the-art models for pixel-wise prediction tasks such as image restoration, image segmentation, or disparity estimation, involve several stages of data resampling, in which the resolution of feature maps is first reduced to aggregate information and then sequentially increased to generate a high-resolution output. Several previous works have investigated the effect of artifacts that are invoked during downsampling and diverse cures have been proposed that facilitate to improve prediction stability and even robustness for image classification. However, equally relevant, artifacts that arise during upsampling have been less discussed. This is significantly relevant as upsampling and downsampling approaches face fundamentally different challenges. While during downsampling, aliases and artifacts can be reduced by blurring feature maps, the emergence of fine details is crucial during upsampling. Blurring is therefore not an option and dedicated operations need to be considered. In this work, we are the first to explore the relevance of context during upsampling by employing convolutional upsampling operations with increasing kernel size while keeping the encoder unchanged. We find that increased kernel sizes can in general improve the prediction stability in tasks such as image restoration or image segmentation, while a block that allows for a combination of small-size kernels for fine details and large-size kernels for artifact removal and increased context yields the best results.
Abstract:Following their success in visual recognition tasks, Vision Transformers(ViTs) are being increasingly employed for image restoration. As a few recent works claim that ViTs for image classification also have better robustness properties, we investigate whether the improved adversarial robustness of ViTs extends to image restoration. We consider the recently proposed Restormer model, as well as NAFNet and the "Baseline network" which are both simplified versions of a Restormer. We use Projected Gradient Descent (PGD) and CosPGD, a recently proposed adversarial attack tailored to pixel-wise prediction tasks for our robustness evaluation. Our experiments are performed on real-world images from the GoPro dataset for image deblurring. Our analysis indicates that contrary to as advocated by ViTs in image classification works, these models are highly susceptible to adversarial attacks. We attempt to improve their robustness through adversarial training. While this yields a significant increase in robustness for Restormer, results on other networks are less promising. Interestingly, the design choices in NAFNet and Baselines, which were based on iid performance, and not on robust generalization, seem to be at odds with the model robustness. Thus, we investigate this further and find a fix.
Abstract:The success of deep learning is frequently described as the ability to train all parameters of a network on a specific application in an end-to-end fashion. Yet, several design choices on the camera level, including the pixel layout of the sensor, are considered as pre-defined and fixed, and high resolution, regular pixel layouts are considered to be the most generic ones in computer vision and graphics, treating all regions of an image as equally important. While several works have considered non-uniform, \eg, hexagonal or foveated, pixel layouts in hardware and image processing, the layout has not been integrated into the end-to-end learning paradigm so far. In this work, we present the first truly end-to-end trained imaging pipeline that optimizes the size and distribution of pixels on the imaging sensor jointly with the parameters of a given neural network on a specific task. We derive an analytic, differentiable approach for the sensor layout parameterization that allows for task-specific, local varying pixel resolutions. We present two pixel layout parameterization functions: rectangular and curvilinear grid shapes that retain a regular topology. We provide a drop-in module that approximates sensor simulation given existing high-resolution images to directly connect our method with existing deep learning models. We show that network predictions benefit from learnable pixel layouts for two different downstream tasks, classification and semantic segmentation.
Abstract:While neural networks allow highly accurate predictions in many tasks, their lack in robustness towards even slight input perturbations hampers their deployment in many real-world applications. Recent research towards evaluating the robustness of neural networks such as the seminal \emph{projected gradient descent} (PGD) attack and subsequent works and benchmarks have therefore drawn significant attention. Yet, such methods focus predominantly on classification tasks, while only a few approaches specifically address the analysis of pixel-wise prediction tasks such as semantic segmentation, optical flow, or disparity estimation. One notable exception is the recently proposed SegPGD attack, which could showcase the importance of pixel-wise attacks for evaluating semantic segmentation. While SegPGD is limited to pixel-wise classification (i.e. segmentation), in this work, we propose CosPGD, a novel white-box adversarial attack that allows to optimize dedicated attacks for any pixel-wise prediction task in a unified setting. It leverages the cosine similarity between the predictions and ground truth to extend directly from classification tasks to regression settings. Further, we empirically show the superior performance of CosPGD for semantic segmentation as well as for optical flow and disparity estimation.