Abstract:Large language models (LLMs) have revolutionised numerous fields, with LLM-as-a-service (LLMSaaS) having a strong generalisation ability that offers accessible solutions directly without the need for costly training. In contrast to the widely studied prompt engineering for task solving directly (in vivo), this paper explores its potential in in-vitro applications. These involve using LLM to generate labels to help the supervised training of mainstream models by (1) noisy label correction and (2) training data augmentation with LLM-generated labels. In this paper, we evaluate this approach in the emerging field of empathy computing -- automating the prediction of psychological questionnaire outcomes from inputs like text sequences. Specifically, crowdsourced datasets in this domain often suffer from noisy labels that misrepresent underlying empathy. By leveraging LLM-generated labels to train pre-trained language models (PLMs) like RoBERTa, we achieve statistically significant accuracy improvements over baselines, achieving a state-of-the-art Pearson correlation coefficient of 0.648 on NewsEmp benchmarks. In addition, we bring insightful discussions, including current challenges in empathy computing, data biases in training data and evaluation metric selection. Code and LLM-generated data are available at https://github.com/hasan-rakibul/LLMPathy (available once the paper is accepted).
Abstract:Video Highlight Detection and Moment Retrieval (HD/MR) are essential in video analysis. Recent joint prediction transformer models often overlook their cross-task dynamics and video-text alignment and refinement. Moreover, most models typically use limited, uni-directional attention mechanisms, resulting in weakly integrated representations and suboptimal performance in capturing the interdependence between video and text modalities. Although large-language and vision-language models (LLM/LVLMs) have gained prominence across various domains, their application in this field remains relatively underexplored. Here we propose VideoLights, a novel HD/MR framework addressing these limitations through (i) Convolutional Projection and Feature Refinement modules with an alignment loss for better video-text feature alignment, (ii) Bi-Directional Cross-Modal Fusion network for strongly coupled query-aware clip representations, and (iii) Uni-directional joint-task feedback mechanism enhancing both tasks through correlation. In addition, (iv) we introduce hard positive/negative losses for adaptive error penalization and improved learning, and (v) leverage LVLMs like BLIP-2 for enhanced multimodal feature integration and intelligent pretraining using synthetic data generated from LVLMs. Comprehensive experiments on QVHighlights, TVSum, and Charades-STA benchmarks demonstrate state-of-the-art performance. Codes and models are available at https://github.com/dpaul06/VideoLights .
Abstract:Test-time adaptation (TTA) of 3D point clouds is crucial for mitigating discrepancies between training and testing samples in real-world scenarios, particularly when handling corrupted point clouds. LiDAR data, for instance, can be affected by sensor failures or environmental factors, causing domain gaps. Adapting models to these distribution shifts online is crucial, as training for every possible variation is impractical. Existing methods often focus on fine-tuning pre-trained models based on self-supervised learning or pseudo-labeling, which can lead to forgetting valuable source domain knowledge over time and reduce generalization on future tests. In this paper, we introduce a novel 3D test-time adaptation method, termed 3DD-TTA, which stands for 3D Denoising Diffusion Test-Time Adaptation. This method uses a diffusion strategy that adapts input point cloud samples to the source domain while keeping the source model parameters intact. The approach uses a Variational Autoencoder (VAE) to encode the corrupted point cloud into a shape latent and latent points. These latent points are corrupted with Gaussian noise and subjected to a denoising diffusion process. During this process, both the shape latent and latent points are updated to preserve fidelity, guiding the denoising toward generating consistent samples that align more closely with the source domain. We conduct extensive experiments on the ShapeNet dataset and investigate its generalizability on ModelNet40 and ScanObjectNN, achieving state-of-the-art results. The code has been released at \url{https://github.com/hamidreza-dastmalchi/3DD-TTA}.
Abstract:This study investigates the automation of meta-analysis in scientific documents using large language models (LLMs). Meta-analysis is a robust statistical method that synthesizes the findings of multiple studies support articles to provide a comprehensive understanding. We know that a meta-article provides a structured analysis of several articles. However, conducting meta-analysis by hand is labor-intensive, time-consuming, and susceptible to human error, highlighting the need for automated pipelines to streamline the process. Our research introduces a novel approach that fine-tunes the LLM on extensive scientific datasets to address challenges in big data handling and structured data extraction. We automate and optimize the meta-analysis process by integrating Retrieval Augmented Generation (RAG). Tailored through prompt engineering and a new loss metric, Inverse Cosine Distance (ICD), designed for fine-tuning on large contextual datasets, LLMs efficiently generate structured meta-analysis content. Human evaluation then assesses relevance and provides information on model performance in key metrics. This research demonstrates that fine-tuned models outperform non-fine-tuned models, with fine-tuned LLMs generating 87.6% relevant meta-analysis abstracts. The relevance of the context, based on human evaluation, shows a reduction in irrelevancy from 4.56% to 1.9%. These experiments were conducted in a low-resource environment, highlighting the study's contribution to enhancing the efficiency and reliability of meta-analysis automation.
Abstract:This study focuses on recognizing Bangladeshi dialects and converting diverse Bengali accents into standardized formal Bengali speech. Dialects, often referred to as regional languages, are distinctive variations of a language spoken in a particular location and are identified by their phonetics, pronunciations, and lexicon. Subtle changes in pronunciation and intonation are also influenced by geographic location, educational attainment, and socioeconomic status. Dialect standardization is needed to ensure effective communication, educational consistency, access to technology, economic opportunities, and the preservation of linguistic resources while respecting cultural diversity. Being the fifth most spoken language with around 55 distinct dialects spoken by 160 million people, addressing Bangla dialects is crucial for developing inclusive communication tools. However, limited research exists due to a lack of comprehensive datasets and the challenges of handling diverse dialects. With the advancement in multilingual Large Language Models (mLLMs), emerging possibilities have been created to address the challenges of dialectal Automated Speech Recognition (ASR) and Machine Translation (MT). This study presents an end-to-end pipeline for converting dialectal Noakhali speech to standard Bangla speech. This investigation includes constructing a large-scale diverse dataset with dialectal speech signals that tailored the fine-tuning process in ASR and LLM for transcribing the dialect speech to dialect text and translating the dialect text to standard Bangla text. Our experiments demonstrated that fine-tuning the Whisper ASR model achieved a CER of 0.8% and WER of 1.5%, while the BanglaT5 model attained a BLEU score of 41.6% for dialect-to-standard text translation.
Abstract:Recent advances in deep learning for processing point clouds hold increased interest in Few-Shot Class Incremental Learning (FSCIL) for 3D computer vision. This paper introduces a new method to tackle the Few-Shot Continual Incremental Learning (FSCIL) problem in 3D point cloud environments. We leverage a foundational 3D model trained extensively on point cloud data. Drawing from recent improvements in foundation models, known for their ability to work well across different tasks, we propose a novel strategy that does not require additional training to adapt to new tasks. Our approach uses a dual cache system: first, it uses previous test samples based on how confident the model was in its predictions to prevent forgetting, and second, it includes a small number of new task samples to prevent overfitting. This dynamic adaptation ensures strong performance across different learning tasks without needing lots of fine-tuning. We tested our approach on datasets like ModelNet, ShapeNet, ScanObjectNN, and CO3D, showing that it outperforms other FSCIL methods and demonstrating its effectiveness and versatility. The code is available at \url{https://github.com/ahmadisahar/ACCV_FCIL3D}.
Abstract:A point cloud is a crucial geometric data structure utilized in numerous applications. The adoption of deep neural networks referred to as Point Cloud Neural Networks (PC- NNs), for processing 3D point clouds, has significantly advanced fields that rely on 3D geometric data to enhance the efficiency of tasks. Expanding the size of both neural network models and 3D point clouds introduces significant challenges in minimizing computational and memory requirements. This is essential for meeting the demanding requirements of real-world applications, which prioritize minimal energy consumption and low latency. Therefore, investigating redundancy in PCNNs is crucial yet challenging due to their sensitivity to parameters. Additionally, traditional pruning methods face difficulties as these networks rely heavily on weights and points. Nonetheless, our research reveals a promising phenomenon that could refine standard PCNN pruning techniques. Our findings suggest that preserving only the top p% of the highest magnitude weights is crucial for accuracy preservation. For example, pruning 99% of the weights from the PointNet model still results in accuracy close to the base level. Specifically, in the ModelNet40 dataset, where the base accuracy with the PointNet model was 87. 5%, preserving only 1% of the weights still achieves an accuracy of 86.8%. Codes are available in: https://github.com/apurba-nsu-rnd-lab/PCNN_Pruning
Abstract:Aligning large language models (LLMs) with a human reasoning approach ensures that LLMs produce morally correct and human-like decisions. Ethical concerns are raised because current models are prone to generating false positives and providing malicious responses. To contribute to this issue, we have curated an ethics dataset named Dataset for Aligning Reasons (DFAR), designed to aid in aligning language models to generate human-like reasons. The dataset comprises statements with ethical-unethical labels and their corresponding reasons. In this study, we employed a unique and novel fine-tuning approach that utilizes ethics labels and their corresponding reasons (L+R), in contrast to the existing fine-tuning approach that only uses labels (L). The original pre-trained versions, the existing fine-tuned versions, and our proposed fine-tuned versions of LLMs were then evaluated on an ethical-unethical classification task and a reason-generation task. Our proposed fine-tuning strategy notably outperforms the others in both tasks, achieving significantly higher accuracy scores in the classification task and lower misalignment rates in the reason-generation task. The increase in classification accuracies and decrease in misalignment rates indicate that the L+R fine-tuned models align more with human ethics. Hence, this study illustrates that injecting reasons has substantially improved the alignment of LLMs, resulting in more human-like responses. We have made the DFAR dataset and corresponding codes publicly available at https://github.com/apurba-nsu-rnd-lab/DFAR.
Abstract:Real-world systems often encounter new data over time, which leads to experiencing target domain shifts. Existing Test-Time Adaptation (TTA) methods tend to apply computationally heavy and memory-intensive backpropagation-based approaches to handle this. Here, we propose a novel method that uses a backpropagation-free approach for TTA for the specific case of 3D data. Our model uses a two-stream architecture to maintain knowledge about the source domain as well as complementary target-domain-specific information. The backpropagation-free property of our model helps address the well-known forgetting problem and mitigates the error accumulation issue. The proposed method also eliminates the need for the usually noisy process of pseudo-labeling and reliance on costly self-supervised training. Moreover, our method leverages subspace learning, effectively reducing the distribution variance between the two domains. Furthermore, the source-domain-specific and the target-domain-specific streams are aligned using a novel entropy-based adaptive fusion strategy. Extensive experiments on popular benchmarks demonstrate the effectiveness of our method. The code will be available at https://github.com/abie-e/BFTT3D.
Abstract:Spatial transcriptomics (ST) captures gene expression within distinct regions (i.e., windows) of a tissue slide. Traditional supervised learning frameworks applied to model ST are constrained to predicting expression from slide image windows for gene types seen during training, failing to generalize to unseen gene types. To overcome this limitation, we propose a semantic guided network (SGN), a pioneering zero-shot framework for predicting gene expression from slide image windows. Considering a gene type can be described by functionality and phenotype, we dynamically embed a gene type to a vector per its functionality and phenotype, and employ this vector to project slide image windows to gene expression in feature space, unleashing zero-shot expression prediction for unseen gene types. The gene type functionality and phenotype are queried with a carefully designed prompt from a pre-trained large language model (LLM). On standard benchmark datasets, we demonstrate competitive zero-shot performance compared to past state-of-the-art supervised learning approaches.