Abstract:Recently, pre-trained language models (PLMs) have been increasingly adopted in spoken language understanding (SLU). However, automatic speech recognition (ASR) systems frequently produce inaccurate transcriptions, leading to noisy inputs for SLU models, which can significantly degrade their performance. To address this, our objective is to train SLU models to withstand ASR errors by exposing them to noises commonly observed in ASR systems, referred to as ASR-plausible noises. Speech noise injection (SNI) methods have pursued this objective by introducing ASR-plausible noises, but we argue that these methods are inherently biased towards specific ASR systems, or ASR-specific noises. In this work, we propose a novel and less biased augmentation method of introducing the noises that are plausible to any ASR system, by cutting off the non-causal effect of noises. Experimental results and analyses demonstrate the effectiveness of our proposed methods in enhancing the robustness and generalizability of SLU models against unseen ASR systems by introducing more diverse and plausible ASR noises in advance.
Abstract:This report introduces \texttt{EEVE-Korean-v1.0}, a Korean adaptation of large language models that exhibit remarkable capabilities across English and Korean text understanding. Building on recent highly capable but English-centric LLMs, such as SOLAR-10.7B and Phi-2, where non-English texts are inefficiently processed with English-centric tokenizers, we present an efficient and effective vocabulary expansion (EEVE) method, which encompasses parameter freezing and subword initialization. In contrast to previous efforts that believe new embeddings require trillions of training tokens, we show that our method can significantly boost non-English proficiency within just 2 billion tokens. Surpassing most instruction-tuned LLMs on the Open Ko-LLM Leaderboard, as of January 2024, our model \texttt{EEVE-Korean-10.8B-v1.0} ranks as the leading Korean pre-trained model in the open-source community, according to Hugging Face's leaderboard. We open-source our models on Huggingface to empower the open research community in various languages.
Abstract:Integrating automatic speech scoring/assessment systems has become a critical aspect of second-language speaking education. With self-supervised learning advancements, end-to-end speech scoring approaches have exhibited promising results. However, this study highlights the significant decrease in the performance of speech scoring systems in new question contexts, thereby identifying this as a cold start problem in terms of items. With the finding of cold-start phenomena, this paper seeks to alleviate the problem by following methods: 1) prompt embeddings, 2) question context embeddings using BERT or CLIP models, and 3) choice of the pretrained acoustic model. Experiments are conducted on TOEIC speaking test datasets collected from English-as-a-second-language (ESL) learners rated by professional TOEIC speaking evaluators. The results demonstrate that the proposed framework not only exhibits robustness in a cold-start environment but also outperforms the baselines for known content.
Abstract:Diffusion models have achieved impressive results in generating diverse and realistic data by employing multi-step denoising processes. However, the need for accommodating significant variations in input noise at each time-step has led to diffusion models requiring a large number of parameters for their denoisers. We have observed that diffusion models effectively act as filters for different frequency ranges at each time-step noise. While some previous works have introduced multi-expert strategies, assigning denoisers to different noise intervals, they overlook the importance of specialized operations for high and low frequencies. For instance, self-attention operations are effective at handling low-frequency components (low-pass filters), while convolutions excel at capturing high-frequency features (high-pass filters). In other words, existing diffusion models employ denoisers with the same architecture, without considering the optimal operations for each time-step noise. To address this limitation, we propose a novel approach called Multi-architecturE Multi-Expert (MEME), which consists of multiple experts with specialized architectures tailored to the operations required at each time-step interval. Through extensive experiments, we demonstrate that MEME outperforms large competitors in terms of both generation performance and computational efficiency.
Abstract:Self-supervised contrastive learning (CL) has achieved state-of-the-art performance in representation learning by minimizing the distance between positive pairs while maximizing that of negative ones. Recently, it has been verified that the model learns better representation with diversely augmented positive pairs because they enable the model to be more view-invariant. However, only a few studies on CL have considered the difference between augmented views, and have not gone beyond the hand-crafted findings. In this paper, we first observe that the score-matching function can measure how much data has changed from the original through augmentation. With the observed property, every pair in CL can be weighted adaptively by the difference of score values, resulting in boosting the performance of the existing CL method. We show the generality of our method, referred to as ScoreCL, by consistently improving various CL methods, SimCLR, SimSiam, W-MSE, and VICReg, up to 3%p in k-NN evaluation on CIFAR-10, CIFAR-100, and ImageNet-100. Moreover, we have conducted exhaustive experiments and ablations, including results on diverse downstream tasks, comparison with possible baselines, and improvement when used with other proposed augmentation methods. We hope our exploration will inspire more research in exploiting the score matching for CL.
Abstract:Diffusion-based generative models have achieved remarkable success in various domains. It trains a model on denoising tasks that encompass different noise levels simultaneously, representing a form of multi-task learning (MTL). However, analyzing and improving diffusion models from an MTL perspective remains under-explored. In particular, MTL can sometimes lead to the well-known phenomenon of $\textit{negative transfer}$, which results in the performance degradation of certain tasks due to conflicts between tasks. In this paper, we aim to analyze diffusion training from an MTL standpoint, presenting two key observations: $\textbf{(O1)}$ the task affinity between denoising tasks diminishes as the gap between noise levels widens, and $\textbf{(O2)}$ negative transfer can arise even in the context of diffusion training. Building upon these observations, our objective is to enhance diffusion training by mitigating negative transfer. To achieve this, we propose leveraging existing MTL methods, but the presence of a huge number of denoising tasks makes this computationally expensive to calculate the necessary per-task loss or gradient. To address this challenge, we propose clustering the denoising tasks into small task clusters and applying MTL methods to them. Specifically, based on $\textbf{(O2)}$, we employ interval clustering to enforce temporal proximity among denoising tasks within clusters. We show that interval clustering can be solved with dynamic programming and utilize signal-to-noise ratio, timestep, and task affinity for clustering objectives. Through this, our approach addresses the issue of negative transfer in diffusion models by allowing for efficient computation of MTL methods. We validate the proposed clustering and its integration with MTL methods through various experiments, demonstrating improved sample quality of diffusion models.
Abstract:Text classification in education, usually called auto-tagging, is the automated process of assigning relevant tags to educational content, such as questions and textbooks. However, auto-tagging suffers from a data scarcity problem, which stems from two major challenges: 1) it possesses a large tag space and 2) it is multi-label. Though a retrieval approach is reportedly good at low-resource scenarios, there have been fewer efforts to directly address the data scarcity problem. To mitigate these issues, here we propose a novel retrieval approach CEAA that provides effective learning in educational text classification. Our main contributions are as follows: 1) we leverage transfer learning from question-answering datasets, and 2) we propose a simple but effective data augmentation method introducing cross-encoder style texts to a bi-encoder architecture for more efficient inference. An extensive set of experiments shows that our proposed method is effective in multi-label scenarios and low-resource tags compared to state-of-the-art models.
Abstract:Question generation (QG) is the task of generating a valid and fluent question based on a given context and the target answer. According to various purposes, even given the same context, instructors can ask questions about different concepts, and even the same concept can be written in different ways. However, the evaluation for QG usually depends on single reference-based similarity metrics, such as n-gram-based metric or learned metric, which is not sufficient to fully evaluate the potential of QG methods. To this end, we propose to paraphrase the reference question for a more robust QG evaluation. Using large language models such as GPT-3, we created semantically and syntactically diverse questions, then adopt the simple aggregation of the popular evaluation metrics as the final scores. Through our experiments, we found that using multiple (pseudo) references is more effective for QG evaluation while showing a higher correlation with human evaluations than evaluation with a single reference.
Abstract:Large Pre-trained Language Models (PLM) have become the most desirable starting point in the field of NLP, as they have become remarkably good at solving many individual tasks. Despite such success, in this paper, we argue that current paradigms of working with PLMs are neglecting a critical aspect of modeling human intelligence: functional compositionality. Functional compositionality - the ability to compose learned tasks - has been a long-standing challenge in the field of AI (and many other fields) as it is considered one of the hallmarks of human intelligence. An illustrative example of such is cross-lingual summarization, where a bilingual person (English-French) could directly summarize an English document into French sentences without having to translate the English document or summary into French explicitly. We discuss why this matter is an important open problem that requires further attention from the field. Then, we show that current PLMs (e.g., GPT-2 and T5) don't have functional compositionality yet and it is far from human-level generalizability. Finally, we suggest several research directions that could push the field towards zero-shot functional compositionality of language models.
Abstract:Diffusion-based generative models have achieved remarkable success in image generation. Their guidance formulation allows an external model to plug-and-play control the generation process for various tasks without fine-tuning the diffusion model. However, the direct use of publicly available off-the-shelf models for guidance fails due to their poor performance on noisy inputs. For that, the existing practice is to fine-tune the guidance models with labeled data corrupted with noises. In this paper, we argue that this practice has limitations in two aspects: (1) performing on inputs with extremely various noises is too hard for a single model; (2) collecting labeled datasets hinders scaling up for various tasks. To tackle the limitations, we propose a novel strategy that leverages multiple experts where each expert is specialized in a particular noise range and guides the reverse process at its corresponding timesteps. However, as it is infeasible to manage multiple networks and utilize labeled data, we present a practical guidance framework termed Practical Plug-And-Play (PPAP), which leverages parameter-efficient fine-tuning and data-free knowledge transfer. We exhaustively conduct ImageNet class conditional generation experiments to show that our method can successfully guide diffusion with small trainable parameters and no labeled data. Finally, we show that image classifiers, depth estimators, and semantic segmentation models can guide publicly available GLIDE through our framework in a plug-and-play manner.