Abstract:Recently, pre-trained language models (PLMs) have been increasingly adopted in spoken language understanding (SLU). However, automatic speech recognition (ASR) systems frequently produce inaccurate transcriptions, leading to noisy inputs for SLU models, which can significantly degrade their performance. To address this, our objective is to train SLU models to withstand ASR errors by exposing them to noises commonly observed in ASR systems, referred to as ASR-plausible noises. Speech noise injection (SNI) methods have pursued this objective by introducing ASR-plausible noises, but we argue that these methods are inherently biased towards specific ASR systems, or ASR-specific noises. In this work, we propose a novel and less biased augmentation method of introducing the noises that are plausible to any ASR system, by cutting off the non-causal effect of noises. Experimental results and analyses demonstrate the effectiveness of our proposed methods in enhancing the robustness and generalizability of SLU models against unseen ASR systems by introducing more diverse and plausible ASR noises in advance.
Abstract:This work investigates neural algorithmic reasoning to develop neural networks capable of learning from classical algorithms. The main challenge is to develop graph neural networks that are expressive enough to predict the given algorithm outputs while generalizing well to out-of-distribution data. In this work, we introduce a new graph neural network layer called Triplet Edge Attention (TEA), an edge-aware graph attention layer. Our algorithm works by precisely computing edge latent, aggregating multiple triplet messages using edge-based attention. We empirically validate our TEA layer in the CLRS benchmark and demonstrate a $5%$ improvement on average. In particular, we achieve a $30%$ improvement for the string algorithms compared to the state-of-the-art model.