Abstract:Predicting future trajectories for other road agents is an essential task for autonomous vehicles. Established trajectory prediction methods primarily use agent tracks generated by a detection and tracking system and HD map as inputs. In this work, we propose a novel method that also incorporates visual input from surround-view cameras, allowing the model to utilize visual cues such as human gazes and gestures, road conditions, vehicle turn signals, etc, which are typically hidden from the model in prior methods. Furthermore, we use textual descriptions generated by a Vision-Language Model (VLM) and refined by a Large Language Model (LLM) as supervision during training to guide the model on what to learn from the input data. Despite using these extra inputs, our method achieves a latency of 53 ms, making it feasible for real-time processing, which is significantly faster than that of previous single-agent prediction methods with similar performance. Our experiments show that both the visual inputs and the textual descriptions contribute to improvements in trajectory prediction performance, and our qualitative analysis highlights how the model is able to exploit these additional inputs. Lastly, in this work we create and release the nuScenes-Text dataset, which augments the established nuScenes dataset with rich textual annotations for every scene, demonstrating the positive impact of utilizing VLM on trajectory prediction. Our project page is at https://moonseokha.github.io/VisionTrap/
Abstract:In autonomous driving and robotics, there is a growing interest in utilizing short-term historical data to enhance multi-camera 3D object detection, leveraging the continuous and correlated nature of input video streams. Recent work has focused on spatially aligning BEV-based features over timesteps. However, this is often limited as its gain does not scale well with long-term past observations. To address this, we advocate for supervising a model to predict objects' poses given past observations, thus explicitly guiding to learn objects' temporal cues. To this end, we propose a model called DAP (Detection After Prediction), consisting of a two-branch network: (i) a branch responsible for forecasting the current objects' poses given past observations and (ii) another branch that detects objects based on the current and past observations. The features predicting the current objects from branch (i) is fused into branch (ii) to transfer predictive knowledge. We conduct extensive experiments with the large-scale nuScenes datasets, and we observe that utilizing such predictive information significantly improves the overall detection performance. Our model can be used plug-and-play, showing consistent performance gain.
Abstract:In multi-view 3D object detection tasks, disparity supervision over overlapping image regions substantially improves the overall detection performance. However, current multi-view 3D object detection methods often fail to detect objects in the overlap region properly, and the network's understanding of the scene is often limited to that of a monocular detection network. To mitigate this issue, we advocate for applying the traditional stereo disparity estimation method to obtain reliable disparity information for the overlap region. Given the disparity estimates as a supervision, we propose to regularize the network to fully utilize the geometric potential of binocular images, and improve the overall detection accuracy. Moreover, we propose to use an adversarial overlap region discriminator, which is trained to minimize the representational gap between non-overlap regions and overlapping regions where objects are often largely occluded or suffer from deformation due to camera distortion, causing a domain shift. We demonstrate the effectiveness of the proposed method with the large-scale multi-view 3D object detection benchmark, called nuScenes. Our experiment shows that our proposed method outperforms the current state-of-the-art methods.