Abstract:Multi-modal image fusion (MMIF) enhances the information content of the fused image by combining the unique as well as common features obtained from different modality sensor images, improving visualization, object detection, and many more tasks. In this work, we introduce an interpretable network for the MMIF task, named FNet, based on an l0-regularized multi-modal convolutional sparse coding (MCSC) model. Specifically, for solving the l0-regularized CSC problem, we develop an algorithm unrolling-based l0-regularized sparse coding (LZSC) block. Given different modality source images, FNet first separates the unique and common features from them using the LZSC block and then these features are combined to generate the final fused image. Additionally, we propose an l0-regularized MCSC model for the inverse fusion process. Based on this model, we introduce an interpretable inverse fusion network named IFNet, which is utilized during FNet's training. Extensive experiments show that FNet achieves high-quality fusion results across five different MMIF tasks. Furthermore, we show that FNet enhances downstream object detection in visible-thermal image pairs. We have also visualized the intermediate results of FNet, which demonstrates the good interpretability of our network.
Abstract:Self-supervised learning has developed rapidly over the last decade and has been applied in many areas of computer vision. Decorrelation-based self-supervised pretraining has shown great promise among non-contrastive algorithms, yielding performance at par with supervised and contrastive self-supervised baselines. In this work, we explore the decorrelation-based paradigm of self-supervised learning and apply the same to learning disentangled stroke features for writer identification. Here we propose a modified formulation of the decorrelation-based framework named SWIS which was proposed for signature verification by standardizing the features along each dimension on top of the existing framework. We show that the proposed framework outperforms the contemporary self-supervised learning framework on the writer identification benchmark and also outperforms several supervised methods as well. To the best of our knowledge, this work is the first of its kind to apply self-supervised learning for learning representations for writer verification tasks.
Abstract:Non-invasive and continuous blood pressure (BP) monitoring is essential for the early prevention of many cardiovascular diseases. Estimating arterial blood pressure (ABP) from photoplethysmography (PPG) has emerged as a promising solution. However, existing deep learning approaches for PPG-to-ABP reconstruction (PAR) encounter certain information loss, impacting the precision of the reconstructed signal. To overcome this limitation, we introduce an invertible neural network for PPG to ABP reconstruction (INN-PAR), which employs a series of invertible blocks to jointly learn the mapping between PPG and its gradient with the ABP signal and its gradient. INN-PAR efficiently captures both forward and inverse mappings simultaneously, thereby preventing information loss. By integrating signal gradients into the learning process, INN-PAR enhances the network's ability to capture essential high-frequency details, leading to more accurate signal reconstruction. Moreover, we propose a multi-scale convolution module (MSCM) within the invertible block, enabling the model to learn features across multiple scales effectively. We have experimented on two benchmark datasets, which show that INN-PAR significantly outperforms the state-of-the-art methods in both waveform reconstruction and BP measurement accuracy.
Abstract:Improving the quality of underwater images is essential for advancing marine research and technology. This work introduces a sparsity-driven interpretable neural network (SINET) for the underwater image enhancement (UIE) task. Unlike pure deep learning methods, our network architecture is based on a novel channel-specific convolutional sparse coding (CCSC) model, ensuring good interpretability of the underlying image enhancement process. The key feature of SINET is that it estimates the salient features from the three color channels using three sparse feature estimation blocks (SFEBs). The architecture of SFEB is designed by unrolling an iterative algorithm for solving the $\ell_1$ regulaized convolutional sparse coding (CSC) problem. Our experiments show that SINET surpasses state-of-the-art PSNR value by $1.05$ dB with $3873$ times lower computational complexity.
Abstract:The proliferation of scene text in both structured and unstructured environments presents significant challenges in optical character recognition (OCR), necessitating more efficient and robust text spotting solutions. This paper presents FastTextSpotter, a framework that integrates a Swin Transformer visual backbone with a Transformer Encoder-Decoder architecture, enhanced by a novel, faster self-attention unit, SAC2, to improve processing speeds while maintaining accuracy. FastTextSpotter has been validated across multiple datasets, including ICDAR2015 for regular texts and CTW1500 and TotalText for arbitrary-shaped texts, benchmarking against current state-of-the-art models. Our results indicate that FastTextSpotter not only achieves superior accuracy in detecting and recognizing multilingual scene text (English and Vietnamese) but also improves model efficiency, thereby setting new benchmarks in the field. This study underscores the potential of advanced transformer architectures in improving the adaptability and speed of text spotting applications in diverse real-world settings. The dataset, code, and pre-trained models have been released in our Github.
Abstract:Medical image segmentation is one of the domains where sufficient annotated data is not available. This necessitates the application of low-data frameworks like few-shot learning. Contemporary prototype-based frameworks often do not account for the variation in features within the support and query images, giving rise to a large variance in prototype alignment. In this work, we adopt a prototype-based self-supervised one-way one-shot learning framework using pseudo-labels generated from superpixels to learn the semantic segmentation task itself. We use a correlation-based probability score to generate a dynamic prototype for each query pixel from the bag of prototypes obtained from the support feature map. This weighting scheme helps to give a higher weightage to contextually related prototypes. We also propose a quadrant masking strategy in the downstream segmentation task by utilizing prior domain information to discard unwanted false positives. We present extensive experimentations and evaluations on abdominal CT and MR datasets to show that the proposed simple but potent framework performs at par with the state-of-the-art methods.
Abstract:Skeleton Action Recognition (SAR) involves identifying human actions using skeletal joint coordinates and their interconnections. While plain Transformers have been attempted for this task, they still fall short compared to the current leading methods, which are rooted in Graph Convolutional Networks (GCNs) due to the absence of structural priors. Recently, a novel selective state space model, Mamba, has surfaced as a compelling alternative to the attention mechanism in Transformers, offering efficient modeling of long sequences. In this work, to the utmost extent of our awareness, we present the first SAR framework incorporating Mamba. Each fundamental block of our model adopts a novel U-ShiftGCN architecture with Mamba as its core component. The encoder segment of the U-ShiftGCN is devised to extract spatial features from the skeletal data using downsampling vanilla Shift S-GCN blocks. These spatial features then undergo intermediate temporal modeling facilitated by the Mamba block before progressing to the encoder section, which comprises vanilla upsampling Shift S-GCN blocks. Additionally, a Shift T-GCN (ShiftTCN) temporal modeling unit is employed before the exit of each fundamental block to refine temporal representations. This particular integration of downsampling spatial, intermediate temporal, upsampling spatial, and ultimate temporal subunits yields promising results for skeleton action recognition. We dub the resulting model \textbf{Simba}, which attains state-of-the-art performance across three well-known benchmark skeleton action recognition datasets: NTU RGB+D, NTU RGB+D 120, and Northwestern-UCLA. Interestingly, U-ShiftGCN (Simba without Intermediate Mamba Block) by itself is capable of performing reasonably well and surpasses our baseline.
Abstract:Single image super-resolution (SISR) is an effective technique to improve the quality of low-resolution thermal images. Recently, transformer-based methods have achieved significant performance in SISR. However, in the SR task, only a small number of pixels are involved in the transformers self-attention (SA) mechanism due to the computational complexity of the attention mechanism. The lambda abstraction is a promising alternative to SA in modeling long-range interactions while being computationally more efficient. This paper presents lambda abstraction-based thermal image super-resolution (LATIS), a novel lightweight architecture for SISR of thermal images. LATIS sequentially captures local and global information using the local and global feature block (LGFB). In LGFB, we introduce a global feature extraction (GFE) module based on the lambda abstraction mechanism, channel-shuffle and convolution (CSConv) layer to encode local context. Besides, to improve the performance further, we propose a differentiable patch-wise histogram-based loss function. Experimental results demonstrate that our LATIS, with the least model parameters and complexity, achieves better or comparable performance with state-of-the-art methods across multiple datasets.
Abstract:Histopathological images are essential for medical diagnosis and treatment planning, but interpreting them accurately using machine learning can be challenging due to variations in tissue preparation, staining and imaging protocols. Domain generalization aims to address such limitations by enabling the learning models to generalize to new datasets or populations. Style transfer-based data augmentation is an emerging technique that can be used to improve the generalizability of machine learning models for histopathological images. However, existing style transfer-based methods can be computationally expensive, and they rely on artistic styles, which can negatively impact model accuracy. In this study, we propose a feature domain style mixing technique that uses adaptive instance normalization to generate style-augmented versions of images. We compare our proposed method with existing style transfer-based data augmentation methods and found that it performs similarly or better, despite requiring less computation and time. Our results demonstrate the potential of feature domain statistics mixing in the generalization of learning models for histopathological image analysis.
Abstract:The adaptation capability to a wide range of domains is crucial for scene text spotting models when deployed to real-world conditions. However, existing state-of-the-art (SOTA) approaches usually incorporate scene text detection and recognition simply by pretraining on natural scene text datasets, which do not directly exploit the intermediate feature representations between multiple domains. Here, we investigate the problem of domain-adaptive scene text spotting, i.e., training a model on multi-domain source data such that it can directly adapt to target domains rather than being specialized for a specific domain or scenario. Further, we investigate a transformer baseline called Swin-TESTR to focus on solving scene-text spotting for both regular and arbitrary-shaped scene text along with an exhaustive evaluation. The results clearly demonstrate the potential of intermediate representations to achieve significant performance on text spotting benchmarks across multiple domains (e.g. language, synth-to-real, and documents). both in terms of accuracy and efficiency.