Abstract:Segmentation of macro and microvascular structures in fundoscopic retinal images plays a crucial role in detection of multiple retinal and systemic diseases, yet it is a difficult problem to solve. Most deep learning approaches for this task involve an autoencoder based architecture, but they face several issues such as lack of enough parameters, overfitting when there are enough parameters and incompatibility between internal feature-spaces. Due to such issues, these techniques are hence not able to extract the best semantic information from the limited data present for such tasks. We propose Attention W-Net, a new U-Net based architecture for retinal vessel segmentation to address these problems. In this architecture with a LadderNet backbone, we have two main contributions: Attention Block and regularisation measures. Our Attention Block uses decoder features to attend over the encoder features from skip-connections during upsampling, resulting in higher compatibility when the encoder and decoder features are added. Our regularisation measures include image augmentation and modifications to the ResNet Block used, which prevent overfitting. With these additions, we observe an AUC and F1-Score of 0.8407 and 0.9833 - a sizeable improvement over its LadderNet backbone as well as competitive performance among the contemporary state-of-the-art methods.
Abstract:Due to cyclic loading and fatigue stress cracks are generated, which affect the safety of any civil infrastructure. Nowadays machine vision is being used to assist us for appropriate maintenance, monitoring and inspection of concrete structures by partial replacement of human-conducted onsite inspections. The current study proposes a crack detection method based on deep convolutional neural network (CNN) for detection of concrete cracks without explicitly calculating the defect features. In the course of the study, a database of 3200 labelled images with concrete cracks has been created, where the contrast, lighting conditions, orientations and severity of the cracks were extremely variable. In this paper, starting from a deep CNN trained with these images of 256 x 256 pixel-resolution, we have gradually optimized the model by identifying the difficulties. Using an augmented dataset, which takes into account the variations and degradations compatible to drone videos, like, random zooming, rotation and intensity scaling and exhaustive ablation studies, we have designed a dual-channel deep CNN which shows high accuracy (~ 92.25%) as well as robustness in finding concrete cracks in realis-tic situations. The model has been tested on the basis of performance and analyzed with the help of feature maps, which establishes the importance of the dual-channel structure.
Abstract:COVID-19 pandemic is severely impacting the lives of billions across the globe. Even after taking massive protective measures like nation-wide lockdowns, discontinuation of international flight services, rigorous testing etc., the infection spreading is still growing steadily, causing thousands of deaths and serious socio-economic crisis. Thus, the identification of the major factors of this infection spreading dynamics is becoming crucial to minimize impact and lifetime of COVID-19 and any future pandemic. In this work, a probabilistic cellular automata based method has been employed to model the infection dynamics for a significant number of different countries. This study proposes that for an accurate data-driven modeling of this infection spread, cellular automata provides an excellent platform, with a sequential genetic algorithm for efficiently estimating the parameters of the dynamics. To the best of our knowledge, this is the first attempt to understand and interpret COVID-19 data using optimized cellular automata, through genetic algorithm. It has been demonstrated that the proposed methodology can be flexible and robust at the same time, and can be used to model the daily active cases, total number of infected people and total death cases through systematic parameter estimation. Elaborate analyses for COVID-19 statistics of forty countries from different continents have been performed, with markedly divergent time evolution of the infection spreading because of demographic and socioeconomic factors. The substantial predictive power of this model has been established with conclusions on the key players in this pandemic dynamics.