Abstract:In Reinforcement Learning (RL), designing precise reward functions remains to be a challenge, particularly when aligning with human intent. Preference-based RL (PbRL) was introduced to address this problem by learning reward models from human feedback. However, existing PbRL methods have limitations as they often overlook the second-order preference that indicates the relative strength of preference. In this paper, we propose Listwise Reward Estimation (LiRE), a novel approach for offline PbRL that leverages second-order preference information by constructing a Ranked List of Trajectories (RLT), which can be efficiently built by using the same ternary feedback type as traditional methods. To validate the effectiveness of LiRE, we propose a new offline PbRL dataset that objectively reflects the effect of the estimated rewards. Our extensive experiments on the dataset demonstrate the superiority of LiRE, i.e., outperforming state-of-the-art baselines even with modest feedback budgets and enjoying robustness with respect to the number of feedbacks and feedback noise. Our code is available at https://github.com/chwoong/LiRE
Abstract:Most continual learning (CL) algorithms have focused on tackling the stability-plasticity dilemma, that is, the challenge of preventing the forgetting of previous tasks while learning new ones. However, they have overlooked the impact of the knowledge transfer when the dataset in a certain task is biased - namely, when some unintended spurious correlations of the tasks are learned from the biased dataset. In that case, how would they affect learning future tasks or the knowledge already learned from the past tasks? In this work, we carefully design systematic experiments using one synthetic and two real-world datasets to answer the question from our empirical findings. Specifically, we first show through two-task CL experiments that standard CL methods, which are unaware of dataset bias, can transfer biases from one task to another, both forward and backward, and this transfer is exacerbated depending on whether the CL methods focus on the stability or the plasticity. We then present that the bias transfer also exists and even accumulate in longer sequences of tasks. Finally, we propose a simple, yet strong plug-in method for debiasing-aware continual learning, dubbed as Group-class Balanced Greedy Sampling (BGS). As a result, we show that our BGS can always reduce the bias of a CL model, with a slight loss of CL performance at most.
Abstract:Many existing group fairness-aware training methods aim to achieve the group fairness by either re-weighting underrepresented groups based on certain rules or using weakly approximated surrogates for the fairness metrics in the objective as regularization terms. Although each of the learning schemes has its own strength in terms of applicability or performance, respectively, it is difficult for any method in the either category to be considered as a gold standard since their successful performances are typically limited to specific cases. To that end, we propose a principled method, dubbed as \ours, which unifies the two learning schemes by incorporating a well-justified group fairness metric into the training objective using a class wise distributionally robust optimization (DRO) framework. We then develop an iterative optimization algorithm that minimizes the resulting objective by automatically producing the correct re-weights for each group. Our experiments show that FairDRO is scalable and easily adaptable to diverse applications, and consistently achieves the state-of-the-art performance on several benchmark datasets in terms of the accuracy-fairness trade-off, compared to recent strong baselines.
Abstract:Recent studies have demonstrated that gradient matching-based dataset synthesis, or dataset condensation (DC), methods can achieve state-of-the-art performance when applied to data-efficient learning tasks. However, in this study, we prove that the existing DC methods can perform worse than the random selection method when task-irrelevant information forms a significant part of the training dataset. We attribute this to the lack of participation of the contrastive signals between the classes resulting from the class-wise gradient matching strategy. To address this problem, we propose Dataset Condensation with Contrastive signals (DCC) by modifying the loss function to enable the DC methods to effectively capture the differences between classes. In addition, we analyze the new loss function in terms of training dynamics by tracking the kernel velocity. Furthermore, we introduce a bi-level warm-up strategy to stabilize the optimization. Our experimental results indicate that while the existing methods are ineffective for fine-grained image classification tasks, the proposed method can successfully generate informative synthetic datasets for the same tasks. Moreover, we demonstrate that the proposed method outperforms the baselines even on benchmark datasets such as SVHN, CIFAR-10, and CIFAR-100. Finally, we demonstrate the high applicability of the proposed method by applying it to continual learning tasks.
Abstract:Recently, fairness-aware learning have become increasingly crucial, but we note that most of those methods operate by assuming the availability of fully annotated group-labels. We emphasize that such assumption is unrealistic for real-world applications since group label annotations are expensive and can conflict with privacy issues. In this paper, we consider a more practical scenario, dubbed as Algorithmic Fairness with the Partially annotated Group labels (Fair-PG). We observe that the existing fairness methods, which only use the data with group-labels, perform even worse than the vanilla training, which simply uses full data only with target labels, under Fair-PG. To address this problem, we propose a simple Confidence-based Group Label assignment (CGL) strategy that is readily applicable to any fairness-aware learning method. Our CGL utilizes an auxiliary group classifier to assign pseudo group labels, where random labels are assigned to low confident samples. We first theoretically show that our method design is better than the vanilla pseudo-labeling strategy in terms of fairness criteria. Then, we empirically show for UTKFace, CelebA and COMPAS datasets that by combining CGL and the state-of-the-art fairness-aware in-processing methods, the target accuracies and the fairness metrics are jointly improved compared to the baseline methods. Furthermore, we convincingly show that our CGL enables to naturally augment the given group-labeled dataset with external datasets only with target labels so that both accuracy and fairness metrics can be improved. We will release our implementation publicly to make future research reproduce our results.
Abstract:Fairness is becoming an increasingly crucial issue for computer vision, especially in the human-related decision systems. However, achieving algorithmic fairness, which makes a model produce indiscriminative outcomes against protected groups, is still an unresolved problem. In this paper, we devise a systematic approach which reduces algorithmic biases via feature distillation for visual recognition tasks, dubbed as MMD-based Fair Distillation (MFD). While the distillation technique has been widely used in general to improve the prediction accuracy, to the best of our knowledge, there has been no explicit work that also tries to improve fairness via distillation. Furthermore, We give a theoretical justification of our MFD on the effect of knowledge distillation and fairness. Throughout the extensive experiments, we show our MFD significantly mitigates the bias against specific minorities without any loss of the accuracy on both synthetic and real-world face datasets.
Abstract:We propose a novel regularization-based continual learning method, dubbed as Adaptive Group Sparsity based Continual Learning (AGS-CL), using two group sparsity-based penalties. Our method selectively employs the two penalties when learning each node based its the importance, which is adaptively updated after learning each new task. By utilizing the proximal gradient descent method for learning, the exact sparsity and freezing of the model is guaranteed, and thus, the learner can explicitly control the model capacity as the learning continues. Furthermore, as a critical detail, we re-initialize the weights associated with unimportant nodes after learning each task in order to prevent the negative transfer that causes the catastrophic forgetting and facilitate efficient learning of new tasks. Throughout the extensive experimental results, we show that our AGS-CL uses much less additional memory space for storing the regularization parameters, and it significantly outperforms several state-of-the-art baselines on representative continual learning benchmarks for both supervised and reinforcement learning tasks.