Abstract:Leveraging real-time eye-tracking, foveated rendering optimizes hardware efficiency and enhances visual quality virtual reality (VR). This approach leverages eye-tracking techniques to determine where the user is looking, allowing the system to render high-resolution graphics only in the foveal region-the small area of the retina where visual acuity is highest, while the peripheral view is rendered at lower resolution. However, modern deep learning-based gaze-tracking solutions often exhibit a long-tail distribution of tracking errors, which can degrade user experience and reduce the benefits of foveated rendering by causing misalignment and decreased visual quality. This paper introduces \textit{FovealNet}, an advanced AI-driven gaze tracking framework designed to optimize system performance by strategically enhancing gaze tracking accuracy. To further reduce the implementation cost of the gaze tracking algorithm, FovealNet employs an event-based cropping method that eliminates over $64.8\%$ of irrelevant pixels from the input image. Additionally, it incorporates a simple yet effective token-pruning strategy that dynamically removes tokens on the fly without compromising tracking accuracy. Finally, to support different runtime rendering configurations, we propose a system performance-aware multi-resolution training strategy, allowing the gaze tracking DNN to adapt and optimize overall system performance more effectively. Evaluation results demonstrate that FovealNet achieves at least $1.42\times$ speed up compared to previous methods and 13\% increase in perceptual quality for foveated output.
Abstract:Inverting visual representations within deep neural networks (DNNs) presents a challenging and important problem in the field of security and privacy for deep learning. The main goal is to invert the features of an unidentified target image generated by a pre-trained DNN, aiming to reconstruct the original image. Feature inversion holds particular significance in understanding the privacy leakage inherent in contemporary split DNN execution techniques, as well as in various applications based on the extracted DNN features. In this paper, we explore the use of diffusion models, a promising technique for image synthesis, to enhance feature inversion quality. We also investigate the potential of incorporating alternative forms of prior knowledge, such as textual prompts and cross-frame temporal correlations, to further improve the quality of inverted features. Our findings reveal that diffusion models can effectively leverage hidden information from the DNN features, resulting in superior reconstruction performance compared to previous methods. This research offers valuable insights into how diffusion models can enhance privacy and security within applications that are reliant on DNN features.
Abstract:Rotating the activation and weight matrices to reduce the influence of outliers in large language models (LLMs) has recently attracted significant attention, particularly in the context of model quantization. Prior studies have shown that in low-precision quantization scenarios, such as 4-bit weights and 4-bit activations (W4A4), randomized Hadamard transforms can achieve significantly higher accuracy than randomized orthogonal transforms. Notably, the reason behind this phenomena remains unknown. In this paper, we find that these transformations show substantial improvement in eliminating outliers for common tokens and achieve similar quantization error. The primary reason for the accuracy difference lies in the fact that randomized Hadamard transforms can slightly reduce the quantization error for tokens with massive activations while randomized orthogonal transforms increase the quantization error. Due to the extreme rarity of these tokens and their critical impact on model accuracy, we consider this a long-tail optimization problem, and therefore construct a simple yet effective method: a weighted loss function. Additionally, we propose an optimization strategy for the rotation matrix that involves alternating optimization of quantization parameters while employing orthogonal Procrustes transforms to refine the rotation matrix. This makes the distribution of the rotated activation values more conducive to quantization, especially for tokens with massive activations. Our method enhances the Rotated LLMs by achieving dual free, Outlier-Free and Massive Activation-Free, dubbed as DFRot. Extensive experiments demonstrate the effectiveness and efficiency of DFRot. By tuning the rotation matrix using just a single sample, DFRot achieves a perplexity improvement of 0.25 and 0.21 on W4A4KV4 and W4A4KV16, respectively, for LLaMA3-8B, a model known for its quantization challenges.
Abstract:We present GazeGen, a user interaction system that generates visual content (images and videos) for locations indicated by the user's eye gaze. GazeGen allows intuitive manipulation of visual content by targeting regions of interest with gaze. Using advanced techniques in object detection and generative AI, GazeGen performs gaze-controlled image adding/deleting, repositioning, and surface material changes of image objects, and converts static images into videos. Central to GazeGen is the DFT Gaze (Distilled and Fine-Tuned Gaze) agent, an ultra-lightweight model with only 281K parameters, performing accurate real-time gaze predictions tailored to individual users' eyes on small edge devices. GazeGen is the first system to combine visual content generation with real-time gaze estimation, made possible exclusively by DFT Gaze. This real-time gaze estimation enables various visual content generation tasks, all controlled by the user's gaze. The input for DFT Gaze is the user's eye images, while the inputs for visual content generation are the user's view and the predicted gaze point from DFT Gaze. To achieve efficient gaze predictions, we derive the small model from a large model (10x larger) via novel knowledge distillation and personal adaptation techniques. We integrate knowledge distillation with a masked autoencoder, developing a compact yet powerful gaze estimation model. This model is further fine-tuned with Adapters, enabling highly accurate and personalized gaze predictions with minimal user input. DFT Gaze ensures low-latency and precise gaze tracking, supporting a wide range of gaze-driven tasks. We validate the performance of DFT Gaze on AEA and OpenEDS2020 benchmarks, demonstrating low angular gaze error and low latency on the edge device (Raspberry Pi 4). Furthermore, we describe applications of GazeGen, illustrating its versatility and effectiveness in various usage scenarios.
Abstract:Following their success in natural language processing (NLP), there has been a shift towards transformer models in computer vision. While transformers perform well and offer promising multi-tasking performance, due to their high compute requirements, many resource-constrained applications still rely on convolutional or hybrid models that combine the benefits of convolution and attention layers and achieve the best results in the sub 100M parameter range. Simultaneously, task adaptation techniques that allow for the use of one shared transformer backbone for multiple downstream tasks, resulting in great storage savings at negligible cost in performance, have not yet been adopted for hybrid transformers. In this work, we investigate how to achieve the best task-adaptation performance and introduce PETAH: Parameter Efficient Task Adaptation for Hybrid Transformers. We further combine PETAH adaptation with pruning to achieve highly performant and storage friendly models for multi-tasking. In our extensive evaluation on classification and other vision tasks, we demonstrate that our PETAH-adapted hybrid models outperform established task-adaptation techniques for ViTs while requiring fewer parameters and being more efficient on mobile hardware.
Abstract:Low-Latency and Low-Power Edge AI is essential for Virtual Reality and Augmented Reality applications. Recent advances show that hybrid models, combining convolution layers (CNN) and transformers (ViT), often achieve superior accuracy/performance tradeoff on various computer vision and machine learning (ML) tasks. However, hybrid ML models can pose system challenges for latency and energy-efficiency due to their diverse nature in dataflow and memory access patterns. In this work, we leverage the architecture heterogeneity from Neural Processing Units (NPU) and Compute-In-Memory (CIM) and perform diverse execution schemas to efficiently execute these hybrid models. We also introduce H4H-NAS, a Neural Architecture Search framework to design efficient hybrid CNN/ViT models for heterogeneous edge systems with both NPU and CIM. Our H4H-NAS approach is powered by a performance estimator built with NPU performance results measured on real silicon, and CIM performance based on industry IPs. H4H-NAS searches hybrid CNN/ViT models with fine granularity and achieves significant (up to 1.34%) top-1 accuracy improvement on ImageNet dataset. Moreover, results from our Algo/HW co-design reveal up to 56.08% overall latency and 41.72% energy improvements by introducing such heterogeneous computing over baseline solutions. The framework guides the design of hybrid network architectures and system architectures of NPU+CIM heterogeneous systems.
Abstract:Diffusion Transformers (DiTs) have recently attracted significant interest from both industry and academia due to their enhanced capabilities in visual generation, surpassing the performance of traditional diffusion models that employ U-Net. However, the improved performance of DiTs comes at the expense of higher parameter counts and implementation costs, which significantly limits their deployment on resource-constrained devices like mobile phones. We propose DiTAS, a data-free post-training quantization (PTQ) method for efficient DiT inference. DiTAS relies on the proposed temporal-aggregated smoothing techniques to mitigate the impact of the channel-wise outliers within the input activations, leading to much lower quantization error under extremely low bitwidth. To further enhance the performance of the quantized DiT, we adopt the layer-wise grid search strategy to optimize the smoothing factor. Experimental results demonstrate that our approach enables 4-bit weight, 8-bit activation (W4A8) quantization for DiTs while maintaining comparable performance as the full-precision model.
Abstract:Speech-driven 3D motion synthesis seeks to create lifelike animations based on human speech, with potential uses in virtual reality, gaming, and the film production. Existing approaches reply solely on speech audio for motion generation, leading to inaccurate and inflexible synthesis results. To mitigate this problem, we introduce a novel text-guided 3D human motion synthesis method, termed \textit{T3M}. Unlike traditional approaches, T3M allows precise control over motion synthesis via textual input, enhancing the degree of diversity and user customization. The experiment results demonstrate that T3M can greatly outperform the state-of-the-art methods in both quantitative metrics and qualitative evaluations. We have publicly released our code at \href{https://github.com/Gloria2tt/T3M.git}{https://github.com/Gloria2tt/T3M.git}
Abstract:Large Language Models (LLMs) are effective in computer hardware synthesis via hardware description language (HDL) generation. However, LLM-assisted approaches for HDL generation struggle when handling complex tasks. We introduce a suite of hierarchical prompting techniques which facilitate efficient stepwise design methods, and develop a generalizable automation pipeline for the process. To evaluate these techniques, we present a benchmark set of hardware designs which have solutions with or without architectural hierarchy. Using these benchmarks, we compare various open-source and proprietary LLMs, including our own fine-tuned Code Llama-Verilog model. Our hierarchical methods automatically produce successful designs for complex hardware modules that standard flat prompting methods cannot achieve, allowing smaller open-source LLMs to compete with large proprietary models. Hierarchical prompting reduces HDL generation time and yields savings on LLM costs. Our experiments detail which LLMs are capable of which applications, and how to apply hierarchical methods in various modes. We explore case studies of generating complex cores using automatic scripted hierarchical prompts, including the first-ever LLM-designed processor with no human feedback.
Abstract:Diffusion Transformers (DiTs) have recently gained substantial attention in both industrial and academic fields for their superior visual generation capabilities, outperforming traditional diffusion models that use U-Net. However,the enhanced performance of DiTs also comes with high parameter counts and implementation costs, seriously restricting their use on resource-limited devices such as mobile phones. To address these challenges, we introduce the Hybrid Floating-point Quantization for DiT(HQ-DiT), an efficient post-training quantization method that utilizes 4-bit floating-point (FP) precision on both weights and activations for DiT inference. Compared to fixed-point quantization (e.g., INT8), FP quantization, complemented by our proposed clipping range selection mechanism, naturally aligns with the data distribution within DiT, resulting in a minimal quantization error. Furthermore, HQ-DiT also implements a universal identity mathematical transform to mitigate the serious quantization error caused by the outliers. The experimental results demonstrate that DiT can achieve extremely low-precision quantization (i.e., 4 bits) with negligible impact on performance. Our approach marks the first instance where both weights and activations in DiTs are quantized to just 4 bits, with only a 0.12 increase in sFID on ImageNet.