Abstract:Misconfigurations are the major causes of software failures. Existing configuration validation techniques rely on manually written rules or test cases, which are expensive to implement and maintain, and are hard to be comprehensive. Leveraging machine learning (ML) and natural language processing (NLP) for configuration validation is considered a promising direction, but has been facing challenges such as the need of not only large-scale configuration data, but also system-specific features and models which are hard to generalize. Recent advances in Large Language Models (LLMs) show the promises to address some of the long-lasting limitations of ML/NLP-based configuration validation techniques. In this paper, we present an exploratory analysis on the feasibility and effectiveness of using LLMs like GPT and Codex for configuration validation. Specifically, we take a first step to empirically evaluate LLMs as configuration validators without additional fine-tuning or code generation. We develop a generic LLM-based validation framework, named Ciri, which integrates different LLMs. Ciri devises effective prompt engineering with few-shot learning based on both valid configuration and misconfiguration data. Ciri also validates and aggregates the outputs of LLMs to generate validation results, coping with known hallucination and nondeterminism of LLMs. We evaluate the validation effectiveness of Ciri on five popular LLMs using configuration data of six mature, widely deployed open-source systems. Our analysis (1) confirms the potential of using LLMs for configuration validation, (2) understands the design space of LLMbased validators like Ciri, especially in terms of prompt engineering with few-shot learning, and (3) reveals open challenges such as ineffectiveness in detecting certain types of misconfigurations and biases to popular configuration parameters.
Abstract:Multimodal learning considers learning from multi-modality data, aiming to fuse heterogeneous sources of information. However, it is not always feasible to leverage all available modalities due to memory constraints. Further, training on all the modalities may be inefficient when redundant information exists within data, such as different subsets of modalities providing similar performance. In light of these challenges, we study modality selection, intending to efficiently select the most informative and complementary modalities under certain computational constraints. We formulate a theoretical framework for optimizing modality selection in multimodal learning and introduce a utility measure to quantify the benefit of selecting a modality. For this optimization problem, we present efficient algorithms when the utility measure exhibits monotonicity and approximate submodularity. We also connect the utility measure with existing Shapley-value-based feature importance scores. Last, we demonstrate the efficacy of our algorithm on synthetic (Patch-MNIST) and two real-world (PEMS-SF, CMU-MOSI) datasets.
Abstract:We introduce a novel multimodal machine translation model that utilizes parallel visual and textual information. Our model jointly optimizes the learning of a shared visual-language embedding and a translator. The model leverages a visual attention grounding mechanism that links the visual semantics with the corresponding textual semantics. Our approach achieves competitive state-of-the-art results on the Multi30K and the Ambiguous COCO datasets. We also collected a new multilingual multimodal product description dataset to simulate a real-world international online shopping scenario. On this dataset, our visual attention grounding model outperforms other methods by a large margin.