Abstract:We introduce a real-time, multichannel speech enhancement algorithm which maintains the spatial cues of stereo recordings including two speech sources. Recognizing that each source has unique spatial information, our method utilizes a dual-path structure, ensuring the spatial cues remain unaffected during enhancement by applying source-specific common-band gain. This method also seamlessly integrates pretrained monaural speech enhancement, eliminating the need for retraining on stereo inputs. Source separation from stereo mixtures is achieved via spatial beamforming, with the steering vector for each source being adaptively updated using post-enhancement output signal. This ensures accurate tracking of the spatial information. The final stereo output is derived by merging the spatial images of the enhanced sources, with its efficacy not heavily reliant on the separation performance of the beamforming. The algorithm runs in real-time on 10-ms frames with a 40 ms of look-ahead. Evaluations reveal its effectiveness in enhancing speech and preserving spatial cues in both fully and sparsely overlapped mixtures.
Abstract:In this study, we present an approach to train a single speech enhancement network that can perform both personalized and non-personalized speech enhancement. This is achieved by incorporating a frame-wise conditioning input that specifies the type of enhancement output. To improve the quality of the enhanced output and mitigate oversuppression, we experiment with re-weighting frames by the presence or absence of speech activity and applying augmentations to speaker embeddings. By training under a multi-task learning setting, we empirically show that the proposed unified model obtains promising results on both personalized and non-personalized speech enhancement benchmarks and reaches similar performance to models that are trained specialized for either task. The strong performance of the proposed method demonstrates that the unified model is a more economical alternative compared to keeping separate task-specific models during inference.
Abstract:In this work, we propose Exformer, a time-domain architecture for target speaker extraction. It consists of a pre-trained speaker embedder network and a separator network based on transformer encoder blocks. We study multiple methods to combine speaker information with the input mixture, and the resulting Exformer architecture obtains superior extraction performance compared to prior time-domain networks. Furthermore, we investigate a two-stage procedure to train the model using mixtures without reference signals upon a pre-trained supervised model. Experimental results show that the proposed semi-supervised learning procedure improves the performance of the supervised baselines.
Abstract:In real life, room effect, also known as room reverberation, and the present background noise degrade the quality of speech. Recently, deep learning-based speech enhancement approaches have shown a lot of promise and surpassed traditional denoising and dereverberation methods. It is also well established that these state-of-the-art denoising algorithms significantly improve the quality of speech as perceived by human listeners. But the role of dereverberation on subjective (perceived) speech quality, and whether the additional artifacts introduced by dereverberation cause more harm than good are still unclear. In this paper, we attempt to answer these questions by evaluating a state of the art speech enhancement system in a comprehensive subjective evaluation study for different choices of dereverberation targets.
Abstract:Singing voice separation aims to separate music into vocals and accompaniment components. One of the major constraints for the task is the limited amount of training data with separated vocals. Data augmentation techniques such as random source mixing have been shown to make better use of existing data and mildly improve model performance. We propose a novel data augmentation technique, chromagram-based pitch-aware remixing, where music segments with high pitch alignment are mixed. By performing controlled experiments in both supervised and semi-supervised settings, we demonstrate that training models with pitch-aware remixing significantly improves the test signal-to-distortion ratio (SDR)
Abstract:The presence of multiple talkers in the surrounding environment poses a difficult challenge for real-time speech communication systems considering the constraints on network size and complexity. In this paper, we present Personalized PercepNet, a real-time speech enhancement model that separates a target speaker from a noisy multi-talker mixture without compromising on complexity of the recently proposed PercepNet. To enable speaker-dependent speech enhancement, we first show how we can train a perceptually motivated speaker embedder network to produce a representative embedding vector for the given speaker. Personalized PercepNet uses the target speaker embedding as additional information to pick out and enhance only the target speaker while suppressing all other competing sounds. Our experiments show that the proposed model significantly outperforms PercepNet and other baselines, both in terms of objective speech enhancement metrics and human opinion scores.
Abstract:Recent progress in singing voice separation has primarily focused on supervised deep learning methods. However, the scarcity of ground-truth data with clean musical sources has been a problem for long. Given a limited set of labeled data, we present a method to leverage a large volume of unlabeled data to improve the model's performance. Following the noisy self-training framework, we first train a teacher network on the small labeled dataset and infer pseudo-labels from the large corpus of unlabeled mixtures. Then, a larger student network is trained on combined ground-truth and self-labeled datasets. Empirical results show that the proposed self-training scheme, along with data augmentation methods, effectively leverage the large unlabeled corpus and obtain superior performance compared to supervised methods.
Abstract:Audio codecs based on discretized neural autoencoders have recently been developed and shown to provide significantly higher compression levels for comparable quality speech output. However, these models are tightly coupled with speech content, and produce unintended outputs in noisy conditions. Based on VQ-VAE autoencoders with WaveRNN decoders, we develop compressor-enhancer encoders and accompanying decoders, and show that they operate well in noisy conditions. We also observe that a compressor-enhancer model performs better on clean speech inputs than a compressor model trained only on clean speech.
Abstract:Neural network applications generally benefit from larger-sized models, but for current speech enhancement models, larger scale networks often suffer from decreased robustness to the variety of real-world use cases beyond what is encountered in training data. We introduce several innovations that lead to better large neural networks for speech enhancement. The novel PoCoNet architecture is a convolutional neural network that, with the use of frequency-positional embeddings, is able to more efficiently build frequency-dependent features in the early layers. A semi-supervised method helps increase the amount of conversational training data by pre-enhancing noisy datasets, improving performance on real recordings. A new loss function biased towards preserving speech quality helps the optimization better match human perceptual opinions on speech quality. Ablation experiments and objective and human opinion metrics show the benefits of the proposed improvements.
Abstract:We present enhancements to a speech-to-speech translation pipeline in order to perform automatic dubbing. Our architecture features neural machine translation generating output of preferred length, prosodic alignment of the translation with the original speech segments, neural text-to-speech with fine tuning of the duration of each utterance, and, finally, audio rendering to enriches text-to-speech output with background noise and reverberation extracted from the original audio. We report on a subjective evaluation of automatic dubbing of excerpts of TED Talks from English into Italian, which measures the perceived naturalness of automatic dubbing and the relative importance of each proposed enhancement.