Abstract:Accurate diagnosis of ophthalmic diseases relies heavily on the interpretation of multimodal ophthalmic images, a process often time-consuming and expertise-dependent. Visual Question Answering (VQA) presents a potential interdisciplinary solution by merging computer vision and natural language processing to comprehend and respond to queries about medical images. This review article explores the recent advancements and future prospects of VQA in ophthalmology from both theoretical and practical perspectives, aiming to provide eye care professionals with a deeper understanding and tools for leveraging the underlying models. Additionally, we discuss the promising trend of large language models (LLM) in enhancing various components of the VQA framework to adapt to multimodal ophthalmic tasks. Despite the promising outlook, ophthalmic VQA still faces several challenges, including the scarcity of annotated multimodal image datasets, the necessity of comprehensive and unified evaluation methods, and the obstacles to achieving effective real-world applications. This article highlights these challenges and clarifies future directions for advancing ophthalmic VQA with LLMs. The development of LLM-based ophthalmic VQA systems calls for collaborative efforts between medical professionals and AI experts to overcome existing obstacles and advance the diagnosis and care of eye diseases.
Abstract:Fundus fluorescein angiography (FFA) is crucial for diagnosing and monitoring retinal vascular issues but is limited by its invasive nature and restricted accessibility compared to color fundus (CF) imaging. Existing methods that convert CF images to FFA are confined to static image generation, missing the dynamic lesional changes. We introduce Fundus2Video, an autoregressive generative adversarial network (GAN) model that generates dynamic FFA videos from single CF images. Fundus2Video excels in video generation, achieving an FVD of 1497.12 and a PSNR of 11.77. Clinical experts have validated the fidelity of the generated videos. Additionally, the model's generator demonstrates remarkable downstream transferability across ten external public datasets, including blood vessel segmentation, retinal disease diagnosis, systemic disease prediction, and multimodal retrieval, showcasing impressive zero-shot and few-shot capabilities. These findings position Fundus2Video as a powerful, non-invasive alternative to FFA exams and a versatile retinal generative foundation model that captures both static and temporal retinal features, enabling the representation of complex inter-modality relationships.
Abstract:Artificial intelligence (AI) has gained significant attention in healthcare consultation due to its potential to improve clinical workflow and enhance medical communication. However, owing to the complex nature of medical information, large language models (LLM) trained with general world knowledge might not possess the capability to tackle medical-related tasks at an expert level. Here, we introduce EyeGPT, a specialized LLM designed specifically for ophthalmology, using three optimization strategies including role-playing, finetuning, and retrieval-augmented generation. In particular, we proposed a comprehensive evaluation framework that encompasses a diverse dataset, covering various subspecialties of ophthalmology, different users, and diverse inquiry intents. Moreover, we considered multiple evaluation metrics, including accuracy, understandability, trustworthiness, empathy, and the proportion of hallucinations. By assessing the performance of different EyeGPT variants, we identify the most effective one, which exhibits comparable levels of understandability, trustworthiness, and empathy to human ophthalmologists (all Ps>0.05). Overall, ur study provides valuable insights for future research, facilitating comprehensive comparisons and evaluations of different strategies for developing specialized LLMs in ophthalmology. The potential benefits include enhancing the patient experience in eye care and optimizing ophthalmologists' services.