University of Maryland
Abstract:Human-LLM conversations are increasingly becoming more pervasive in peoples' professional and personal lives, yet many users still struggle to elicit helpful responses from LLM Chatbots. One of the reasons for this issue is users' lack of understanding in crafting effective prompts that accurately convey their information needs. Meanwhile, the existence of real-world conversational datasets on the one hand, and the text understanding faculties of LLMs on the other, present a unique opportunity to study this problem, and its potential solutions at scale. Thus, in this paper we present the first LLM-centric study of real human-AI chatbot conversations, focused on investigating aspects in which user queries fall short of expressing information needs, and the potential of using LLMs to rewrite suboptimal user prompts. Our findings demonstrate that rephrasing ineffective prompts can elicit better responses from a conversational system, while preserving the user's original intent. Notably, the performance of rewrites improves in longer conversations, where contextual inferences about user needs can be made more accurately. Additionally, we observe that LLMs often need to -- and inherently do -- make \emph{plausible} assumptions about a user's intentions and goals when interpreting prompts. Our findings largely hold true across conversational domains, user intents, and LLMs of varying sizes and families, indicating the promise of using prompt rewriting as a solution for better human-AI interactions.
Abstract:While it is commonly accepted that maintaining common ground plays a role in conversational success, little prior research exists connecting conversational grounding to success in task-oriented conversations. We study failures of grounding in the Ubuntu IRC dataset, where participants use text-only communication to resolve technical issues. We find that disruptions in conversational flow often stem from a misalignment in common ground, driven by a divergence in beliefs and assumptions held by participants. These disruptions, which we call conversational friction, significantly correlate with task success. We find that although LLMs can identify overt cases of conversational friction, they struggle with subtler and more context-dependent instances requiring pragmatic or domain-specific reasoning.
Abstract:This paper's primary goal is to provoke thoughtful discussion about the relationship between bias and fundamental properties of large language models. We do this by seeking to convince the reader that harmful biases are an inevitable consequence arising from the design of any large language model as LLMs are currently formulated. To the extent that this is true, it suggests that the problem of harmful bias cannot be properly addressed without a serious reconsideration of AI driven by LLMs, going back to the foundational assumptions underlying their design.
Abstract:This paper presents a novel multimodal framework to distinguish between different symptom classes of subjects in the schizophrenia spectrum and healthy controls using audio, video, and text modalities. We implemented Convolution Neural Network and Long Short Term Memory based unimodal models and experimented on various multimodal fusion approaches to come up with the proposed framework. We utilized a minimal Gated multimodal unit (mGMU) to obtain a bi-modal intermediate fusion of the features extracted from the input modalities before finally fusing the outputs of the bimodal fusions to perform subject-wise classifications. The use of mGMU units in the multimodal framework improved the performance in both weighted f1-score and weighted AUC-ROC scores.
Abstract:Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
Abstract:An important assumption that comes with using LLMs on psycholinguistic data has gone unverified. LLM-based predictions are based on subword tokenization, not decomposition of words into morphemes. Does that matter? We carefully test this by comparing surprisal estimates using orthographic, morphological, and BPE tokenization against reading time data. Our results replicate previous findings and provide evidence that in the aggregate, predictions using BPE tokenization do not suffer relative to morphological and orthographic segmentation. However, a finer-grained analysis points to potential issues with relying on BPE-based tokenization, as well as providing promising results involving morphologically-aware surprisal estimates and suggesting a new method for evaluating morphological prediction.
Abstract:This study focuses on how different modalities of human communication can be used to distinguish between healthy controls and subjects with schizophrenia who exhibit strong positive symptoms. We developed a multi-modal schizophrenia classification system using audio, video, and text. Facial action units and vocal tract variables were extracted as low-level features from video and audio respectively, which were then used to compute high-level coordination features that served as the inputs to the audio and video modalities. Context-independent text embeddings extracted from transcriptions of speech were used as the input for the text modality. The multi-modal system is developed by fusing a segment-to-session-level classifier for video and audio modalities with a text model based on a Hierarchical Attention Network (HAN) with cross-modal attention. The proposed multi-modal system outperforms the previous state-of-the-art multi-modal system by 8.53% in the weighted average F1 score.
Abstract:Language is multifaceted. A given utterance can be re-expressed in equivalent forms, and its implicit and explicit content support various logical and pragmatic inferences. When processing an utterance, we consider these different aspects, as mediated by our interpretive goals -- understanding that "it's dark in here" may be a veiled direction to turn on a light. Nonetheless, NLP methods typically operate over the surface form alone, eliding this nuance. In this work, we represent language with language, and direct an LLM to decompose utterances into logical and plausible inferences. The reduced complexity of the decompositions makes them easier to embed, opening up novel applications. Variations on our technique lead to state-of-the-art improvements on sentence embedding benchmarks, a substantive application in computational political science, and to a novel construct-discovery process, which we validate with human annotations.
Abstract:Stressors are related to depression, but this relationship is complex. We investigate the relationship between open-ended text responses about stressors and depressive symptoms across gender and racial/ethnic groups. First, we use topic models and other NLP tools to find thematic and vocabulary differences when reporting stressors across demographic groups. We train language models using self-reported stressors to predict depressive symptoms, finding a relationship between stressors and depression. Finally, we find that differences in stressors translate to downstream performance differences across demographic groups.
Abstract:Recently, the relationship between automated and human evaluation of topic models has been called into question. Method developers have staked the efficacy of new topic model variants on automated measures, and their failure to approximate human preferences places these models on uncertain ground. Moreover, existing evaluation paradigms are often divorced from real-world use. Motivated by content analysis as a dominant real-world use case for topic modeling, we analyze two related aspects of topic models that affect their effectiveness and trustworthiness in practice for that purpose: the stability of their estimates and the extent to which the model's discovered categories align with human-determined categories in the data. We find that neural topic models fare worse in both respects compared to an established classical method. We take a step toward addressing both issues in tandem by demonstrating that a straightforward ensembling method can reliably outperform the members of the ensemble.