University of Maryland
Abstract:This paper's primary goal is to provoke thoughtful discussion about the relationship between bias and fundamental properties of large language models. We do this by seeking to convince the reader that harmful biases are an inevitable consequence arising from the design of any large language model as LLMs are currently formulated. To the extent that this is true, it suggests that the problem of harmful bias cannot be properly addressed without a serious reconsideration of AI driven by LLMs, going back to the foundational assumptions underlying their design.
Abstract:This paper presents a novel multimodal framework to distinguish between different symptom classes of subjects in the schizophrenia spectrum and healthy controls using audio, video, and text modalities. We implemented Convolution Neural Network and Long Short Term Memory based unimodal models and experimented on various multimodal fusion approaches to come up with the proposed framework. We utilized a minimal Gated multimodal unit (mGMU) to obtain a bi-modal intermediate fusion of the features extracted from the input modalities before finally fusing the outputs of the bimodal fusions to perform subject-wise classifications. The use of mGMU units in the multimodal framework improved the performance in both weighted f1-score and weighted AUC-ROC scores.
Abstract:Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
Abstract:An important assumption that comes with using LLMs on psycholinguistic data has gone unverified. LLM-based predictions are based on subword tokenization, not decomposition of words into morphemes. Does that matter? We carefully test this by comparing surprisal estimates using orthographic, morphological, and BPE tokenization against reading time data. Our results replicate previous findings and provide evidence that in the aggregate, predictions using BPE tokenization do not suffer relative to morphological and orthographic segmentation. However, a finer-grained analysis points to potential issues with relying on BPE-based tokenization, as well as providing promising results involving morphologically-aware surprisal estimates and suggesting a new method for evaluating morphological prediction.
Abstract:This study focuses on how different modalities of human communication can be used to distinguish between healthy controls and subjects with schizophrenia who exhibit strong positive symptoms. We developed a multi-modal schizophrenia classification system using audio, video, and text. Facial action units and vocal tract variables were extracted as low-level features from video and audio respectively, which were then used to compute high-level coordination features that served as the inputs to the audio and video modalities. Context-independent text embeddings extracted from transcriptions of speech were used as the input for the text modality. The multi-modal system is developed by fusing a segment-to-session-level classifier for video and audio modalities with a text model based on a Hierarchical Attention Network (HAN) with cross-modal attention. The proposed multi-modal system outperforms the previous state-of-the-art multi-modal system by 8.53% in the weighted average F1 score.
Abstract:Language is multifaceted. A given utterance can be re-expressed in equivalent forms, and its implicit and explicit content support various logical and pragmatic inferences. When processing an utterance, we consider these different aspects, as mediated by our interpretive goals -- understanding that "it's dark in here" may be a veiled direction to turn on a light. Nonetheless, NLP methods typically operate over the surface form alone, eliding this nuance. In this work, we represent language with language, and direct an LLM to decompose utterances into logical and plausible inferences. The reduced complexity of the decompositions makes them easier to embed, opening up novel applications. Variations on our technique lead to state-of-the-art improvements on sentence embedding benchmarks, a substantive application in computational political science, and to a novel construct-discovery process, which we validate with human annotations.
Abstract:Stressors are related to depression, but this relationship is complex. We investigate the relationship between open-ended text responses about stressors and depressive symptoms across gender and racial/ethnic groups. First, we use topic models and other NLP tools to find thematic and vocabulary differences when reporting stressors across demographic groups. We train language models using self-reported stressors to predict depressive symptoms, finding a relationship between stressors and depression. Finally, we find that differences in stressors translate to downstream performance differences across demographic groups.
Abstract:Recently, the relationship between automated and human evaluation of topic models has been called into question. Method developers have staked the efficacy of new topic model variants on automated measures, and their failure to approximate human preferences places these models on uncertain ground. Moreover, existing evaluation paradigms are often divorced from real-world use. Motivated by content analysis as a dominant real-world use case for topic modeling, we analyze two related aspects of topic models that affect their effectiveness and trustworthiness in practice for that purpose: the stability of their estimates and the extent to which the model's discovered categories align with human-determined categories in the data. We find that neural topic models fare worse in both respects compared to an established classical method. We take a step toward addressing both issues in tandem by demonstrating that a straightforward ensembling method can reliably outperform the members of the ensemble.
Abstract:Topic model evaluation, like evaluation of other unsupervised methods, can be contentious. However, the field has coalesced around automated estimates of topic coherence, which rely on the frequency of word co-occurrences in a reference corpus. Recent models relying on neural components surpass classical topic models according to these metrics. At the same time, unlike classical models, the practice of neural topic model evaluation suffers from a validation gap: automatic coherence for neural models has not been validated using human experimentation. In addition, as we show via a meta-analysis of topic modeling literature, there is a substantial standardization gap in the use of automated topic modeling benchmarks. We address both the standardization gap and the validation gap. Using two of the most widely used topic model evaluation datasets, we assess a dominant classical model and two state-of-the-art neural models in a systematic, clearly documented, reproducible way. We use automatic coherence along with the two most widely accepted human judgment tasks, namely, topic rating and word intrusion. Automated evaluation will declare one model significantly different from another when corresponding human evaluations do not, calling into question the validity of fully automatic evaluations independent of human judgments.
Abstract:The records of a clinical encounter can be extensive and complex, thus placing a premium on tools that can extract and summarize relevant information. This paper introduces the task of generating discharge summaries for a clinical encounter. Summaries in this setting need to be faithful, traceable, and scale to multiple long documents, motivating the use of extract-then-abstract summarization cascades. We introduce two new measures, faithfulness and hallucination rate for evaluation in this task, which complement existing measures for fluency and informativeness. Results across seven medical sections and five models show that a summarization architecture that supports traceability yields promising results, and that a sentence-rewriting approach performs consistently on the measure used for faithfulness (faithfulness-adjusted $F_3$) over a diverse range of generated sections.