Abstract:Large language models have been shown to behave inconsistently in response to meaning-preserving paraphrastic inputs. At the same time, researchers evaluate the knowledge and reasoning abilities of these models with test evaluations that do not disaggregate the effect of paraphrastic variability on performance. We propose a metric for evaluating the paraphrastic consistency of natural language reasoning models based on the probability of a model achieving the same correctness on two paraphrases of the same problem. We mathematically connect this metric to the proportion of a model's variance in correctness attributable to paraphrasing. To estimate paraphrastic consistency, we collect ParaNLU, a dataset of 7,782 human-written and validated paraphrased reasoning problems constructed on top of existing benchmark datasets for defeasible and abductive natural language inference. Using ParaNLU, we measure the paraphrastic consistency of several model classes and show that consistency dramatically increases with pretraining but not finetuning. All models tested exhibited room for improvement in paraphrastic consistency.
Abstract:Questions posed by information-seeking users often contain implicit false or potentially harmful assumptions. In a high-risk domain such as maternal and infant health, a question-answering system must recognize these pragmatic constraints and go beyond simply answering user questions, examining them in context to respond helpfully. To achieve this, we study pragmatic inferences made when mothers ask questions about pregnancy and infant care. Some of the inferences in these questions evade detection by existing methods, risking the possibility of QA systems failing to address them which can have dangerous health and policy implications. We explore the viability of detecting inferences from questions using large language models and illustrate that informing existing QA pipelines with pragmatic inferences produces responses that can mitigate the propagation of harmful beliefs.
Abstract:When strong partial-input baselines reveal artifacts in crowdsourced NLI datasets, the performance of full-input models trained on such datasets is often dismissed as reliance on spurious correlations. We investigate whether state-of-the-art NLI models are capable of overriding default inferences made by a partial-input baseline. We introduce an evaluation set of 600 examples consisting of perturbed premises to examine a RoBERTa model's sensitivity to edited contexts. Our results indicate that NLI models are still capable of learning to condition on context--a necessary component of inferential reasoning--despite being trained on artifact-ridden datasets.
Abstract:Much of modern day text simplification research focuses on sentence-level simplification, transforming original, more complex sentences to simplified versions. However, adding content can often be useful when difficult concepts and reasoning need to be explained. In this work, we present the first data-driven study of content addition in document simplification, which we call elaborative simplification. We introduce a new annotated dataset of 1.3K instances of elaborative simplification and analyze how entities, ideas, and concepts are elaborated through the lens of contextual specificity. We establish baselines for elaboration generation using large scale pre-trained language models, and illustrate that considering contextual specificity during generation can improve performance. Our results illustrate the complexities of elaborative simplification, suggesting many interesting directions for future work.