Abstract:Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.
Abstract:Adversarial examples represent a serious issue for the application of machine learning models in many sensitive domains. For generating adversarial examples, decision based black-box attacks are one of the most practical techniques as they only require query access to the model. One of the most recently proposed state-of-the-art decision based black-box attacks is Triangle Attack (TA). In this paper, we offer a high-level description of TA and explain potential theoretical limitations. We then propose a new decision based black-box attack, Triangle Attack with Reinforcement Learning (TARL). Our new attack addresses the limits of TA by leveraging reinforcement learning. This creates an attack that can achieve similar, if not better, attack accuracy than TA with half as many queries on state-of-the-art classifiers and defenses across ImageNet and CIFAR-10.
Abstract:To facilitate healthcare delivery, language models (LMs) have significant potential for clinical prediction tasks using electronic health records (EHRs). However, in these high-stakes applications, unreliable decisions can result in high costs due to compromised patient safety and ethical concerns, thus increasing the need for good uncertainty modeling of automated clinical predictions. To address this, we consider the uncertainty quantification of LMs for EHR tasks in white- and black-box settings. We first quantify uncertainty in white-box models, where we can access model parameters and output logits. We show that an effective reduction of model uncertainty can be achieved by using the proposed multi-tasking and ensemble methods in EHRs. Continuing with this idea, we extend our approach to black-box settings, including popular proprietary LMs such as GPT-4. We validate our framework using longitudinal clinical data from more than 6,000 patients in ten clinical prediction tasks. Results show that ensembling methods and multi-task prediction prompts reduce uncertainty across different scenarios. These findings increase the transparency of the model in white-box and black-box settings, thus advancing reliable AI healthcare.
Abstract:Uncertainty quantification enables users to assess the reliability of responses generated by large language models (LLMs). We present a novel Question Rephrasing technique to evaluate the input uncertainty of LLMs, which refers to the uncertainty arising from equivalent variations of the inputs provided to LLMs. This technique is integrated with sampling methods that measure the output uncertainty of LLMs, thereby offering a more comprehensive uncertainty assessment. We validated our approach on property prediction and reaction prediction for molecular chemistry tasks.
Abstract:Deep learning-based optical flow (DLOF) extracts features in adjacent video frames with deep convolutional neural networks. It uses those features to estimate the inter-frame motions of objects at the pixel level. In this article, we evaluate the ability of optical flow to quantify the spontaneous flows of MT-based active nematics under different labeling conditions. We compare DLOF against the commonly used technique, particle imaging velocimetry (PIV). We obtain flow velocity ground truths either by performing semi-automated particle tracking on samples with sparsely labeled filaments, or from passive tracer beads. We find that DLOF produces significantly more accurate velocity fields than PIV for densely labeled samples. We show that the breakdown of PIV arises because the algorithm cannot reliably distinguish contrast variations at high densities, particularly in directions parallel to the nematic director. DLOF overcomes this limitation. For sparsely labeled samples, DLOF and PIV produce results with similar accuracy, but DLOF gives higher-resolution fields. Our work establishes DLOF as a versatile tool for measuring fluid flows in a broad class of active, soft, and biophysical systems.
Abstract:Nuclear magnetic resonance (NMR) spectroscopy plays a pivotal role in various scientific fields, offering insights into structural information, electronic properties and dynamic behaviors of molecules. Accurate NMR spectrum prediction efficiently produces candidate molecules, enabling chemists to compare them with actual experimental spectra. This process aids in confirming molecular structures or pinpointing discrepancies, guiding further investigation. Machine Learning (ML) has then emerged as a promising alternative approach for predicting atomic NMR chemical shits of molecules given their structures. Although significant progresses have been made in predicting one-dimensional (1D) NMR, two-dimensional (2D) NMR prediction via ML remains a challenge due to the lack of annotated NMR training datasets. To address this gap, we propose an iterative self-training (IST) approach to train a deep learning model for predicting atomic 2DNMR shifts and assigning peaks in experimental spectra. Our model undergoes an initial pre-training phase employing a Multi-Task Training (MTT) approach, which simultaneously leverages annotated 1D NMR datasets of both $^{1}\text{H}$ and $^{13}\text{C}$ spectra to enhance its understanding of NMR spectra. Subsequently, the pre-trained model is utilized to generate pseudo-annotations for unlabelled 2D NMR spectra, which are subsequently used to refine the 2D NMR prediction model. Our approach iterates between annotated unlabelled 2D NMR data and refining our 2D NMR prediction model until convergence. Finally, our model is able to not only accurately predict 2D NMR but also annotate peaks in experimental 2D NMR spectra. Experimental results show that our model is capable of accurately handling medium-sized and large molecules, including polysaccharides, underscoring its effectiveness.
Abstract:Enhancing accurate molecular property prediction relies on effective and proficient representation learning. It is crucial to incorporate diverse molecular relationships characterized by multi-similarity (self-similarity and relative similarities) between molecules. However, current molecular representation learning methods fall short in exploring multi-similarity and often underestimate the complexity of relationships between molecules. Additionally, previous multi-similarity approaches require the specification of positive and negative pairs to attribute distinct predefined weights to different relative similarities, which can introduce potential bias. In this work, we introduce Graph Multi-Similarity Learning for Molecular Property Prediction (GraphMSL) framework, along with a novel approach to formulate a generalized multi-similarity metric without the need to define positive and negative pairs. In each of the chemical modality spaces (e.g.,molecular depiction image, fingerprint, NMR, and SMILES) under consideration, we first define a self-similarity metric (i.e., similarity between an anchor molecule and another molecule), and then transform it into a generalized multi-similarity metric for the anchor through a pair weighting function. GraphMSL validates the efficacy of the multi-similarity metric across MoleculeNet datasets. Furthermore, these metrics of all modalities are integrated into a multimodal multi-similarity metric, which showcases the potential to improve the performance. Moreover, the focus of the model can be redirected or customized by altering the fusion function. Last but not least, GraphMSL proves effective in drug discovery evaluations through post-hoc analyses of the learnt representations.
Abstract:Molecular representation learning (MRL) is a powerful tool for bridging the gap between machine learning and chemical sciences, as it converts molecules into numerical representations while preserving their chemical features. These encoded representations serve as a foundation for various downstream biochemical studies, including property prediction and drug design. MRL has had great success with proteins and general biomolecule datasets. Yet, in the growing sub-field of glycoscience (the study of carbohydrates, where longer carbohydrates are also called glycans), MRL methods have been barely explored. This under-exploration can be primarily attributed to the limited availability of comprehensive and well-curated carbohydrate-specific datasets and a lack of Machine learning (ML) pipelines specifically tailored to meet the unique problems presented by carbohydrate data. Since interpreting and annotating carbohydrate-specific data is generally more complicated than protein data, domain experts are usually required to get involved. The existing MRL methods, predominately optimized for proteins and small biomolecules, also cannot be directly used in carbohydrate applications without special modifications. To address this challenge, accelerate progress in glycoscience, and enrich the data resources of the MRL community, we introduce GlycoNMR. GlycoNMR contains two laboriously curated datasets with 2,609 carbohydrate structures and 211,543 annotated nuclear magnetic resonance (NMR) chemical shifts for precise atomic-level prediction. We tailored carbohydrate-specific features and adapted existing MRL models to tackle this problem effectively. For illustration, we benchmark four modified MRL models on our new datasets.
Abstract:Nuclear magnetic resonance (NMR) spectroscopy plays an essential role across various scientific disciplines, providing valuable insights into molecular dynamics and interactions. Despite the promise of AI-enhanced NMR prediction models, challenges persist in the interpretation of spectra for tasks such as molecular retrieval, isomer recognition, and peak assignment. In response, this paper introduces Multi-Level Multimodal Alignment with Knowledge-Guided Instance-Wise Discrimination (K-M3AID) to establish meaningful correspondences between two heterogeneous modalities: molecular graphs (structures) and NMR spectra. In particular, K-M3AID employs a dual-coordinated contrastive learning architecture, and incorporates a graph-level alignment module, a node-level alignment module, and a communication channel. Notably, the framework introduces knowledge-guided instance-wise discrimination into contrastive learning within the node-level alignment module, significantly enhancing accuracy in cross-modal alignment. Additionally, K-M3AID showcases its capability of meta-learning by demonstrating that skills acquired during node-level alignment positively impact graph-level alignment. Empirical validation underscores K-M3AID's effectiveness in addressing multiple zero-shot tasks, offering a promising solution to bridge the gap between structural information and spectral data in complex NMR scenarios.
Abstract:The versatility of multimodal deep learning holds tremendous promise for advancing scientific research and practical applications. As this field continues to evolve, the collective power of cross-modal analysis promises to drive transformative innovations, leading us to new frontiers in chemical understanding and discovery. Hence, we introduce Asymmetric Contrastive Multimodal Learning (ACML) as a novel approach tailored for molecules, showcasing its potential to advance the field of chemistry. ACML harnesses the power of effective asymmetric contrastive learning to seamlessly transfer information from various chemical modalities to molecular graph representations. By combining pre-trained chemical unimodal encoders and a shallow-designed graph encoder, ACML facilitates the assimilation of coordinated chemical semantics from different modalities, leading to comprehensive representation learning with efficient training. This innovative framework enhances the interpretability of learned representations and bolsters the expressive power of graph neural networks. Through practical tasks such as isomer discrimination and uncovering crucial chemical properties for drug discovery, ACML exhibits its capability to revolutionize chemical research and applications, providing a deeper understanding of chemical semantics of different modalities.