Abstract:Programming languages possess rich semantic information such as data flow that is represented by graphs and not available from the surface form of source code. Recent code language models have scaled to billions of parameters, but model source code solely as text tokens while ignoring any other structural information. Conversely, models that do encode structural information of code make modifications to the Transformer architecture, limiting their scale and compatibility with pretrained LLMs. In this work, we take the best of both worlds with GALLa - Graph Aligned Large Language Model. GALLa utilizes graph neural networks and cross-modal alignment technologies to inject the structural information of code into LLMs as an auxiliary task during finetuning. This framework is both model-agnostic and task-agnostic, as it can be applied to any code LLM for any code downstream task, and requires the structural graph data only at training time from a corpus unrelated to the finetuning data, while incurring no cost at inference time over the baseline LLM. Experiments on five code tasks with four different baseline LLMs ranging in size from 350M to 8B validate the effectiveness of GALLa, demonstrating consistent improvement over the baseline, even for powerful models such as LLaMA3.
Abstract:The success of language models in code assistance has spurred the proposal of repository-level code completion as a means to enhance prediction accuracy, utilizing the context from the entire codebase. However, this amplified context can inadvertently increase inference latency, potentially undermining the developer experience and deterring tool adoption - a challenge we termed the Context-Latency Conundrum. This paper introduces REPOFUSE, a pioneering solution designed to enhance repository-level code completion without the latency trade-off. REPOFUSE uniquely fuses two types of context: the analogy context, rooted in code analogies, and the rationale context, which encompasses in-depth semantic relationships. We propose a novel rank truncated generation (RTG) technique that efficiently condenses these contexts into prompts with restricted size. This enables REPOFUSE to deliver precise code completions while maintaining inference efficiency. Through testing with the CrossCodeEval suite, REPOFUSE has demonstrated a significant leap over existing models, achieving a 40.90% to 59.75% increase in exact match (EM) accuracy for code completions and a 26.8% enhancement in inference speed. Beyond experimental validation, REPOFUSE has been integrated into the workflow of a large enterprise, where it actively supports various coding tasks.
Abstract:Code Large Language Models (Code LLMs) have gained significant attention in the industry due to their wide applications in the full lifecycle of software engineering. However, the effectiveness of existing models in understanding non-English inputs for multi-lingual code-related tasks is still far from well studied. This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM. It is specifically designed for code-related tasks with both English and Chinese prompts and supports over 40 programming languages. CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset that is carefully filtered by program analyzers and optimized during the training process. Extensive experiments are conducted using real-world usage scenarios, the industry-standard benchmark HumanEval-x, and the specially designed CodeFuseEval for Chinese prompts. To assess the effectiveness of CodeFuse, we actively collected valuable human feedback from the AntGroup's software development process where CodeFuse has been successfully deployed. The results demonstrate that CodeFuse-13B achieves a HumanEval pass@1 score of 37.10%, positioning it as one of the top multi-lingual code LLMs with similar parameter sizes. In practical scenarios, such as code generation, code translation, code comments, and testcase generation, CodeFuse performs better than other models when confronted with Chinese prompts.