Abstract:Recent research in the field of multimodal machine translation (MMT) has indicated that the visual modality is either dispensable or offers only marginal advantages. However, most of these conclusions are drawn from the analysis of experimental results based on a limited set of bilingual sentence-image pairs, such as Multi30k. In these kinds of datasets, the content of one bilingual parallel sentence pair must be well represented by a manually annotated image, which is different from the real-world translation scenario. In this work, we adhere to the universal multimodal machine translation framework proposed by Tang et al. (2022). This approach allows us to delve into the impact of the visual modality on translation efficacy by leveraging real-world translation datasets. Through a comprehensive exploration via probing tasks, we find that the visual modality proves advantageous for the majority of authentic translation datasets. Notably, the translation performance primarily hinges on the alignment and coherence between textual and visual contents. Furthermore, our results suggest that visual information serves a supplementary role in multimodal translation and can be substituted.
Abstract:An automatic encoder (AE) extreme learning machine (ELM)-AE-ELM model is proposed to predict the NOx emission concentration based on the combination of mutual information algorithm (MI), AE, and ELM. First, the importance of practical variables is computed by the MI algorithm, and the mechanism is analyzed to determine the variables related to the NOx emission concentration. Then, the time delay correlations between the selected variables and NOx emission concentration are further analyzed to reconstruct the modeling data. Subsequently, the AE is applied to extract hidden features within the input variables. Finally, an ELM algorithm establishes the relationship between the NOx emission concentration and deep features. The experimental results on practical data indicate that the proposed model shows promising performance compared to state-of-art models.
Abstract:The wind power ramp events threaten the power grid safety significantly. To improve the ramp prediction accuracy, a hybrid wavelet deep belief network algorithm with adaptive feature selection (WDBNAFS) is proposed. First, the wind power characteristic is analyzed. Then, wavelet decomposition is addressed to the time series, and an adaptive feature selection algorithm is proposed to select the inputs of the prediction model. Finally, a deep belief network is employed to predict the wind power ramp event, and the proposed WDBNAFS was testified with the experiments based on the practical data. The simulation results demonstrate that the prediction accuracy of the proposed algorithm is more than 90%.
Abstract:The real-time prediction of NOx emissions is of great significance for pollutant emission control and unit operation of coal-fired power plants. Aiming at dealing with the large time delay and strong nonlinear characteristics of the combustion process, a dynamic correction prediction model considering the time delay is proposed. First, the maximum information coefficient (MIC) is used to calculate the delay time between related parameters and NOx emissions, and the modeling data set is reconstructed; then, an adaptive feature selection algorithm based on Lasso and ReliefF is constructed to filter out the high correlation with NOx emissions. Parameters; Finally, an extreme learning machine (ELM) model combined with error correction was established to achieve the purpose of dynamically predicting the concentration of nitrogen oxides. Experimental results based on actual data show that the same variable has different delay times under load conditions such as rising, falling, and steady; and there are differences in model characteristic variables under different load conditions; dynamic error correction strategies effectively improve modeling accuracy; proposed The prediction error of the algorithm under different working conditions is less than 2%, which can accurately predict the NOx concentration at the combustion outlet, and provide guidance for NOx emission monitoring and combustion process optimization.
Abstract:Aiming at the problem that delay time is difficult to determine and prediction accuracy is low in building prediction model of SCR system, a dynamic modeling scheme based on a hybrid of multiple data-driven algorithms was proposed. First, processed abnormal values and normalized the data. To improve the relevance of the input data, used MIC to estimate delay time and reconstructed production data. Then used combined feature selection method to determine input variables. To further mine data information, VMD was used to decompose input time series. Finally, established NOx emission prediction model combining ELM and EC model. Experimental results based on actual historical operating data show that the MAPE of predicted results is 2.61%. Model sensitivity analysis shows that besides the amount of ammonia injection, the inlet oxygen concentration and the flue gas temperature have a significant impact on NOx emission, which should be considered in SCR process control and optimization.