Abstract:State-of-the-art space science missions increasingly rely on automation due to spacecraft complexity and the costs of human oversight. The high volume of data, including scientific and telemetry data, makes manual inspection challenging. Machine learning offers significant potential to meet these demands. The Euclid space telescope, in its survey phase since February 2024, exemplifies this shift. Euclid's success depends on accurate monitoring and interpretation of housekeeping telemetry and science-derived data. Thousands of telemetry parameters, monitored as time series, may or may not impact the quality of scientific data. These parameters have complex interdependencies, often due to physical relationships (e.g., proximity of temperature sensors). Optimising science operations requires careful anomaly detection and identification of hidden parameter states. Moreover, understanding the interactions between known anomalies and physical quantities is crucial yet complex, as related parameters may display anomalies with varied timing and intensity. We address these challenges by analysing temperature anomalies in Euclid's telemetry from February to August 2024, focusing on eleven temperature parameters and 35 covariates. We use a predictive XGBoost model to forecast temperatures based on historical values, detecting anomalies as deviations from predictions. A second XGBoost model predicts anomalies from covariates, capturing their relationships to temperature anomalies. We identify the top three anomalies per parameter and analyse their interactions with covariates using SHAP (Shapley Additive Explanations), enabling rapid, automated analysis of complex parameter relationships. Our method demonstrates how machine learning can enhance telemetry monitoring, offering scalable solutions for other missions with similar data challenges.
Abstract:Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour.
Abstract:Reflected or scattered light produce artefacts in astronomical observations that can negatively impact the scientific study. Hence, automated detection of these artefacts is highly beneficial, especially with the increasing amounts of data gathered. Machine learning methods are well-suited to this problem, but currently there is a lack of annotated data to train such approaches to detect artefacts in astronomical observations. In this work, we present a dataset of images from the XMM-Newton space telescope Optical Monitoring camera showing different types of artefacts. We hand-annotated a sample of 1000 images with artefacts which we use to train automated ML methods. We further demonstrate techniques tailored for accurate detection and masking of artefacts using instance segmentation. We adopt a hybrid approach, combining knowledge from both convolutional neural networks (CNNs) and transformer-based models and use their advantages in segmentation. The presented method and dataset will advance artefact detection in astronomical observations by providing a reproducible baseline. All code and data are made available (https://github.com/ESA-Datalabs/XAMI-model and https://github.com/ESA-Datalabs/XAMI-dataset).
Abstract:The third Gaia data release (DR3) contains $\sim$170 000 astrometric orbit solutions of two-body systems located within $\sim$500 pc of the Sun. Determining component masses in these systems, in particular of stars hosting exoplanets, usually hinges on incorporating complementary observations in addition to the astrometry, e.g. spectroscopy and radial velocities. Several DR3 two-body systems with exoplanet, brown-dwarf, stellar, and black-hole components have been confirmed in this way. We developed an alternative machine learning approach that uses only the DR3 orbital solutions with the aim of identifying the best candidates for exoplanets and brown-dwarf companions. Based on confirmed substellar companions in the literature, we use semi-supervised anomaly detection methods in combination with extreme gradient boosting and random forest classifiers to determine likely low-mass outliers in the population of non-single sources. We employ and study feature importance to investigate the method's plausibility and produced a list of 22 best candidates of which four are exoplanet candidates and another five are either very-massive brown dwarfs or very-low mass stars. Three candidates, including one initial exoplanet candidate, correspond to false-positive solutions where longer-period binary star motion was fitted with a biased shorter-period orbit. We highlight nine candidates with brown-dwarf companions for preferential follow-up. One candidate companion around the Sun-like star G 15-6 could be confirmed as a genuine brown dwarf using external radial-velocity data. This new approach is a powerful complement to the traditional identification methods for substellar companions among Gaia astrometric orbits. It is particularly relevant in the context of Gaia DR4 and its expected exoplanet discovery yield.
Abstract:Voice-based interfaces rely on a wake-up word mechanism to initiate communication with devices. However, achieving a robust, energy-efficient, and fast detection remains a challenge. This paper addresses these real production needs by enhancing data with temporal alignments and using detection based on two phases with multi-resolution. It employs two models: a lightweight on-device model for real-time processing of the audio stream and a verification model on the server-side, which is an ensemble of heterogeneous architectures that refine detection. This scheme allows the optimization of two operating points. To protect privacy, audio features are sent to the cloud instead of raw audio. The study investigated different parametric configurations for feature extraction to select one for on-device detection and another for the verification model. Furthermore, thirteen different audio classifiers were compared in terms of performance and inference time. The proposed ensemble outperforms our stronger classifier in every noise condition.
Abstract:Recent advances in modeling density distributions, so-called neural density fields, can accurately describe the density distribution of celestial bodies without, e.g., requiring a shape model - properties of great advantage when designing trajectories close to these bodies. Previous work introduced this approach, but several open questions remained. This work investigates neural density fields and their relative errors in the context of robustness to external factors like noise or constraints during training, like the maximal available gravity signal strength due to a certain distance exemplified for 433 Eros and 67P/Churyumov-Gerasimenko. It is found that both models trained on a polyhedral and mascon ground truth perform similarly, indicating that the ground truth is not the accuracy bottleneck. The impact of solar radiation pressure on a typical probe affects training neglectable, with the relative error being of the same magnitude as without noise. However, limiting the precision of measurement data by applying Gaussian noise hurts the obtainable precision. Further, pretraining is shown as practical in order to speed up network training. Hence, this work demonstrates that training neural networks for the gravity inversion problem is appropriate as long as the gravity signal is distinguishable from noise. Code and results are available at https://github.com/gomezzz/geodesyNets
Abstract:The development and adoption of artificial intelligence (AI) technologies in space applications is growing quickly as the consensus increases on the potential benefits introduced. As more and more aerospace engineers are becoming aware of new trends in AI, traditional approaches are revisited to consider the applications of emerging AI technologies. Already at the time of writing, the scope of AI-related activities across academia, the aerospace industry and space agencies is so wide that an in-depth review would not fit in these pages. In this chapter we focus instead on two main emerging trends we believe capture the most relevant and exciting activities in the field: differentiable intelligence and on-board machine learning. Differentiable intelligence, in a nutshell, refers to works making extensive use of automatic differentiation frameworks to learn the parameters of machine learning or related models. Onboard machine learning considers the problem of moving inference, as well as learning, onboard. Within these fields, we discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT), giving priority to advanced topics going beyond the transposition of established AI techniques and practices to the space domain.
Abstract:Dyson spheres are hypothetical megastructures encircling stars in order to harvest most of their energy output. During the 11th edition of the GTOC challenge, participants were tasked with a complex trajectory planning related to the construction of a precursor Dyson structure, a heliocentric ring made of twelve stations. To this purpose, we developed several new approaches that synthesize techniques from machine learning, combinatorial optimization, planning and scheduling, and evolutionary optimization effectively integrated into a fully automated pipeline. These include a machine learned transfer time estimator, improving the established Edelbaum approximation and thus better informing a Lazy Race Tree Search to identify and collect asteroids with high arrival mass for the stations; a series of optimally-phased low-thrust transfers to all stations computed by indirect optimization techniques, exploiting the synodic periodicity of the system; and a modified Hungarian scheduling algorithm, which utilizes evolutionary techniques to arrange a mass-balanced arrival schedule out of all transfer possibilities. We describe the steps of our pipeline in detail with a special focus on how our approaches mutually benefit from each other. Lastly, we outline and analyze the final solution of our team, ACT&Friends, which ranked second at the GTOC 11 challenge.
Abstract:We present a novel approach based on artificial neural networks, so-called geodesyNets, and present compelling evidence of their ability to serve as accurate geodetic models of highly irregular bodies using minimal prior information on the body. The approach does not rely on the body shape information but, if available, can harness it. GeodesyNets learn a three-dimensional, differentiable, function representing the body density, which we call neural density field. The body shape, as well as other geodetic properties, can easily be recovered. We investigate six different shapes including the bodies 101955 Bennu, 67P Churyumov-Gerasimenko, 433 Eros and 25143 Itokawa for which shape models developed during close proximity surveys are available. Both heterogeneous and homogeneous mass distributions are considered. The gravitational acceleration computed from the trained geodesyNets models, as well as the inferred body shape, show great accuracy in all cases with a relative error on the predicted acceleration smaller than 1\% even close to the asteroid surface. When the body shape information is available, geodesyNets can seamlessly exploit it and be trained to represent a high-fidelity neural density field able to give insights into the internal structure of the body. This work introduces a new unexplored approach to geodesy, adding a powerful tool to consolidated ones based on spherical harmonics, mascon models and polyhedral gravity.
Abstract:Supervised learning techniques are at the center of many tasks in remote sensing. Unfortunately, these methods, especially recent deep learning methods, often require large amounts of labeled data for training. Even though satellites acquire large amounts of data, labeling the data is often tedious, expensive and requires expert knowledge. Hence, improved methods that require fewer labeled samples are needed. We present MSMatch, the first semi-supervised learning approach competitive with supervised methods on scene classification on the EuroSAT benchmark dataset. We test both RGB and multispectral images and perform various ablation studies to identify the critical parts of the model. The trained neural network achieves state-of-the-art results on EuroSAT with an accuracy that is between 1.98% and 19.76% better than previous methods depending on the number of labeled training examples. With just five labeled examples per class we reach 94.53% and 95.86% accuracy on the EuroSAT RGB and multispectral datasets, respectively. With 50 labels per class we reach 97.62% and 98.23% accuracy. Our results show that MSMatch is capable of greatly reducing the requirements for labeled data. It translates well to multispectral data and should enable various applications that are currently infeasible due to a lack of labeled data. We provide the source code of MSMatch online to enable easy reproduction and quick adoption.