Abstract:Factorization machine (FM) variants are widely used in recommendation systems that operate under strict throughput and latency requirements, such as online advertising systems. FMs are known both due to their ability to model pairwise feature interactions while being resilient to data sparsity, and their computational graphs that facilitate fast inference and training. Moreover, when items are ranked as a part of a query for each incoming user, these graphs facilitate computing the portion stemming from the user and context fields only once per query. Consequently, in terms of inference cost, the number of user or context fields is practically unlimited. More advanced FM variants, such as FwFM, provide better accuracy by learning a representation of field-wise interactions, but require computing all pairwise interaction terms explicitly. The computational cost during inference is proportional to the square of the number of fields, including user, context, and item. When the number of fields is large, this is prohibitive in systems with strict latency constraints. To mitigate this caveat, heuristic pruning of low intensity field interactions is commonly used to accelerate inference. In this work we propose an alternative to the pruning heuristic in FwFMs using a diagonal plus symmetric low-rank decomposition. Our technique reduces the computational cost of inference, by allowing it to be proportional to the number of item fields only. Using a set of experiments on real-world datasets, we show that aggressive rank reduction outperforms similarly aggressive pruning, both in terms of accuracy and item recommendation speed. We corroborate our claim of faster inference experimentally, both via a synthetic test, and by having deployed our solution to a major online advertising system. The code to reproduce our experimental results is at https://github.com/michaelviderman/pytorch-fm/tree/dev.
Abstract:With yearly revenue exceeding one billion USD, Yahoo Gemini native advertising marketplace serves more than two billion impressions daily to hundreds of millions of unique users. One of the fastest growing segments of Gemini native is dynamic-product-ads (DPA), where major advertisers, such as Amazon and Walmart, provide catalogs with millions of products for the system to choose from and present to users. The subject of this work is finding and expanding the right audience for each DPA ad, which is one of the many challenges DPA presents. Approaches such as targeting various user groups, e.g., users who already visited the advertisers' websites (Retargeting), users that searched for certain products (Search-Prospecting), or users that reside in preferred locations (Location-Prospecting), have limited audience expansion capabilities. In this work we present two new approaches for audience expansion that also maintain predefined performance goals. The Conversion-Prospecting approach predicts DPA conversion rates based on Gemini native logged data, and calculates the expected cost-per-action (CPA) for determining users' eligibility to products and optimizing DPA bids in Gemini native auctions. To support new advertisers and products, the Trending-Prospecting approach matches trending products to users by learning their tendency towards products from advertisers' sites logged events. The tendency scores indicate the popularity of the product and the similarity of the user to those who have previously engaged with this product. The two new prospecting approaches were tested online, serving real Gemini native traffic, demonstrating impressive DPA delivery and DPA revenue lifts while maintaining most traffic within the acceptable CPA range (i.e., performance goal). After a successful testing phase, the proposed approaches are currently in production and serve all Gemini native traffic.
Abstract:Yahoo's native advertising (also known as Gemini native) serves billions of ad impressions daily, reaching a yearly run-rate of many hundred of millions USD. Driving the Gemini native models that are used to predict both click probability (pCTR) and conversion probability (pCONV) is OFFSET - a feature enhanced collaborative-filtering (CF) based event prediction algorithm. \offset is a one-pass algorithm that updates its model for every new batch of logged data using a stochastic gradient descent (SGD) based approach. Since OFFSET represents its users by their features (i.e., user-less model) due to sparsity issues, rule based hard frequency capping (HFC) is used to control the number of times a certain user views a certain ad. Moreover, related statistics reveal that user ad fatigue results in a dramatic drop in click through rate (CTR). Therefore, to improve click prediction accuracy, we propose a soft frequency capping (SFC) approach, where the frequency feature is incorporated into the OFFSET model as a user-ad feature and its weight vector is learned via logistic regression as part of OFFSET training. Online evaluation of the soft frequency capping algorithm via bucket testing showed a significant 7.3% revenue lift. Since then, the frequency feature enhanced model has been pushed to production serving all traffic, and is generating a hefty revenue lift for Yahoo Gemini native. We also report related statistics that reveal, among other things, that while users' gender does not affect ad fatigue, the latter seems to increase with users' age.
Abstract:Verizon Media (VZM) native advertising is one of VZM largest and fastest growing businesses, reaching a run-rate of several hundred million USDs in the past year. Driving the VZM native models that are used to predict event probabilities, such as click and conversion probabilities, is OFFSET - a feature enhanced collaborative-filtering based event-prediction algorithm. In this work we focus on the challenge of predicting click-through rates (CTR) when we are aware that some of the clicks have short dwell-time and are defined as accidental clicks. An accidental click implies little affinity between the user and the ad, so predicting that similar users will click on the ad is inaccurate. Therefore, it may be beneficial to remove clicks with dwell-time lower than a predefined threshold from the training set. However, we cannot ignore these positive events, as filtering these will cause the model to under predict. Previous approaches have tried to apply filtering and then adding corrective biases to the CTR predictions, but did not yield revenue lifts and therefore were not adopted. In this work, we present a new approach where the positive weight of the accidental clicks is distributed among all of the negative events (skips), based on their likelihood of causing accidental clicks, as predicted by an auxiliary model. These likelihoods are taken as the correct labels of the negative events, shifting our training from using only binary labels and adopting a binary cross-entropy loss function in our training process. After showing offline performance improvements, the modified model was tested online serving VZM native users, and provided 1.18% revenue lift over the production model which is agnostic to accidental clicks.
Abstract:Factorization machine (FM) variants are widely used for large scale real-time content recommendation systems, since they offer an excellent balance between model accuracy and low computational costs for training and inference. These systems are trained on tabular data with both numerical and categorical columns. Incorporating numerical columns poses a challenge, and they are typically incorporated using a scalar transformation or binning, which can be either learned or chosen a-priori. In this work, we provide a systematic and theoretically-justified way to incorporate numerical features into FM variants by encoding them into a vector of function values for a set of functions of one's choice. We view factorization machines as approximators of segmentized functions, namely, functions from a field's value to the real numbers, assuming the remaining fields are assigned some given constants, which we refer to as the segment. From this perspective, we show that our technique yields a model that learns segmentized functions of the numerical feature spanned by the set of functions of one's choice, namely, the spanning coefficients vary between segments. Hence, to improve model accuracy we advocate the use of functions known to have strong approximation power, and offer the B-Spline basis due to its well-known approximation power, availability in software libraries, and efficiency. Our technique preserves fast training and inference, and requires only a small modification of the computational graph of an FM model. Therefore, it is easy to incorporate into an existing system to improve its performance. Finally, we back our claims with a set of experiments, including synthetic, performance evaluation on several data-sets, and an A/B test on a real online advertising system which shows improved performance.
Abstract:Yahoo Gemini native advertising marketplace serves billions of impressions daily, to hundreds millions of unique users, and reaches a yearly revenue of many hundreds of millions USDs. Powering Gemini native models for predicting advertise (ad) event probabilities, such as conversions and clicks, is OFFSET - a feature enhanced collaborative-filtering (CF) based event prediction algorithm. The predicted probabilities are then used in Gemini native auctions to determine which ads to present for every serving event (impression). Dynamic creative optimization (DCO) is a recent Gemini native product that was launched two years ago and is increasingly gaining more attention from advertisers. The DCO product enables advertisers to issue several assets per each native ad attribute, creating multiple combinations for each DCO ad. Since different combinations may appeal to different crowds, it may be beneficial to present certain combinations more frequently than others to maximize revenue while keeping advertisers and users satisfied. The initial DCO offer was to optimize click-through rates (CTR), however as the marketplace shifts more towards conversion based campaigns, advertisers also ask for a {conversion based solution. To accommodate this request, we present a post-auction solution, where DCO ads combinations are favored according to their predicted conversion rate (CVR). The predictions are provided by an auxiliary OFFSET based combination CVR prediction model, and used to generate the combination distributions for DCO ad rendering during serving time. An online evaluation of this explore-exploit solution, via online bucket A/B testing, serving Gemini native DCO traffic, showed a 53.5% CVR lift, when compared to a control bucket serving all combinations uniformly at random.
Abstract:It is well known that collaborative filtering (CF) based recommender systems provide better modeling of users and items associated with considerable rating history. The lack of historical ratings results in the user and the item cold-start problems. The latter is the main focus of this work. Most of the current literature addresses this problem by integrating content-based recommendation techniques to model the new item. However, in many cases such content is not available, and the question arises is whether this problem can be mitigated using CF techniques only. We formalize this problem as an optimization problem: given a new item, a pool of available users, and a budget constraint, select which users to assign with the task of rating the new item in order to minimize the prediction error of our model. We show that the objective function is monotone-supermodular, and propose efficient optimal design based algorithms that attain an approximation to its optimum. Our findings are verified by an empirical study using the Netflix dataset, where the proposed algorithms outperform several baselines for the problem at hand.
Abstract:We study exploration in Multi-Armed Bandits in a setting where $k$ players collaborate in order to identify an $\epsilon$-optimal arm. Our motivation comes from recent employment of bandit algorithms in computationally intensive, large-scale applications. Our results demonstrate a non-trivial tradeoff between the number of arm pulls required by each of the players, and the amount of communication between them. In particular, our main result shows that by allowing the $k$ players to communicate only once, they are able to learn $\sqrt{k}$ times faster than a single player. That is, distributing learning to $k$ players gives rise to a factor $\sqrt{k}$ parallel speed-up. We complement this result with a lower bound showing this is in general the best possible. On the other extreme, we present an algorithm that achieves the ideal factor $k$ speed-up in learning performance, with communication only logarithmic in $1/\epsilon$.