Abstract:The task of predicting conversion rates (CVR) lies at the heart of online advertising systems aiming to optimize bids to meet advertiser performance requirements. Even with the recent rise of deep neural networks, these predictions are often made by factorization machines (FM), especially in commercial settings where inference latency is key. These models are trained using the logistic regression framework on labeled tabular data formed from past user activity that is relevant to the task at hand. Many advertisers only care about click-attributed conversions. A major challenge in training models that predict conversions-given-clicks comes from data sparsity - clicks are rare, conversions attributed to clicks are even rarer. However, mitigating sparsity by adding conversions that are not click-attributed to the training set impairs model calibration. Since calibration is critical to achieving advertiser goals, this is infeasible. In this work we use the well-known idea of self-supervised pre-training, and use an auxiliary auto-encoder model trained on all conversion events, both click-attributed and not, as a feature extractor to enrich the main CVR prediction model. Since the main model does not train on non click-attributed conversions, this does not impair calibration. We adapt the basic self-supervised pre-training idea to our online advertising setup by using a loss function designed for tabular data, facilitating continual learning by ensuring auto-encoder stability, and incorporating a neural network into a large-scale real-time ad auction that ranks tens of thousands of ads, under strict latency constraints, and without incurring a major engineering cost. We show improvements both offline, during training, and in an online A/B test. Following its success in A/B tests, our solution is now fully deployed to the Yahoo native advertising system.
Abstract:With yearly revenue exceeding one billion USD, Yahoo Gemini native advertising marketplace serves more than two billion impressions daily to hundreds of millions of unique users. One of the fastest growing segments of Gemini native is dynamic-product-ads (DPA), where major advertisers, such as Amazon and Walmart, provide catalogs with millions of products for the system to choose from and present to users. The subject of this work is finding and expanding the right audience for each DPA ad, which is one of the many challenges DPA presents. Approaches such as targeting various user groups, e.g., users who already visited the advertisers' websites (Retargeting), users that searched for certain products (Search-Prospecting), or users that reside in preferred locations (Location-Prospecting), have limited audience expansion capabilities. In this work we present two new approaches for audience expansion that also maintain predefined performance goals. The Conversion-Prospecting approach predicts DPA conversion rates based on Gemini native logged data, and calculates the expected cost-per-action (CPA) for determining users' eligibility to products and optimizing DPA bids in Gemini native auctions. To support new advertisers and products, the Trending-Prospecting approach matches trending products to users by learning their tendency towards products from advertisers' sites logged events. The tendency scores indicate the popularity of the product and the similarity of the user to those who have previously engaged with this product. The two new prospecting approaches were tested online, serving real Gemini native traffic, demonstrating impressive DPA delivery and DPA revenue lifts while maintaining most traffic within the acceptable CPA range (i.e., performance goal). After a successful testing phase, the proposed approaches are currently in production and serve all Gemini native traffic.
Abstract:Yahoo's native advertising (also known as Gemini native) serves billions of ad impressions daily, reaching a yearly run-rate of many hundred of millions USD. Driving the Gemini native models that are used to predict both click probability (pCTR) and conversion probability (pCONV) is OFFSET - a feature enhanced collaborative-filtering (CF) based event prediction algorithm. \offset is a one-pass algorithm that updates its model for every new batch of logged data using a stochastic gradient descent (SGD) based approach. Since OFFSET represents its users by their features (i.e., user-less model) due to sparsity issues, rule based hard frequency capping (HFC) is used to control the number of times a certain user views a certain ad. Moreover, related statistics reveal that user ad fatigue results in a dramatic drop in click through rate (CTR). Therefore, to improve click prediction accuracy, we propose a soft frequency capping (SFC) approach, where the frequency feature is incorporated into the OFFSET model as a user-ad feature and its weight vector is learned via logistic regression as part of OFFSET training. Online evaluation of the soft frequency capping algorithm via bucket testing showed a significant 7.3% revenue lift. Since then, the frequency feature enhanced model has been pushed to production serving all traffic, and is generating a hefty revenue lift for Yahoo Gemini native. We also report related statistics that reveal, among other things, that while users' gender does not affect ad fatigue, the latter seems to increase with users' age.
Abstract:Verizon Media (VZM) native advertising is one of VZM largest and fastest growing businesses, reaching a run-rate of several hundred million USDs in the past year. Driving the VZM native models that are used to predict event probabilities, such as click and conversion probabilities, is OFFSET - a feature enhanced collaborative-filtering based event-prediction algorithm. In this work we focus on the challenge of predicting click-through rates (CTR) when we are aware that some of the clicks have short dwell-time and are defined as accidental clicks. An accidental click implies little affinity between the user and the ad, so predicting that similar users will click on the ad is inaccurate. Therefore, it may be beneficial to remove clicks with dwell-time lower than a predefined threshold from the training set. However, we cannot ignore these positive events, as filtering these will cause the model to under predict. Previous approaches have tried to apply filtering and then adding corrective biases to the CTR predictions, but did not yield revenue lifts and therefore were not adopted. In this work, we present a new approach where the positive weight of the accidental clicks is distributed among all of the negative events (skips), based on their likelihood of causing accidental clicks, as predicted by an auxiliary model. These likelihoods are taken as the correct labels of the negative events, shifting our training from using only binary labels and adopting a binary cross-entropy loss function in our training process. After showing offline performance improvements, the modified model was tested online serving VZM native users, and provided 1.18% revenue lift over the production model which is agnostic to accidental clicks.
Abstract:Yahoo Gemini native advertising marketplace serves billions of impressions daily, to hundreds millions of unique users, and reaches a yearly revenue of many hundreds of millions USDs. Powering Gemini native models for predicting advertise (ad) event probabilities, such as conversions and clicks, is OFFSET - a feature enhanced collaborative-filtering (CF) based event prediction algorithm. The predicted probabilities are then used in Gemini native auctions to determine which ads to present for every serving event (impression). Dynamic creative optimization (DCO) is a recent Gemini native product that was launched two years ago and is increasingly gaining more attention from advertisers. The DCO product enables advertisers to issue several assets per each native ad attribute, creating multiple combinations for each DCO ad. Since different combinations may appeal to different crowds, it may be beneficial to present certain combinations more frequently than others to maximize revenue while keeping advertisers and users satisfied. The initial DCO offer was to optimize click-through rates (CTR), however as the marketplace shifts more towards conversion based campaigns, advertisers also ask for a {conversion based solution. To accommodate this request, we present a post-auction solution, where DCO ads combinations are favored according to their predicted conversion rate (CVR). The predictions are provided by an auxiliary OFFSET based combination CVR prediction model, and used to generate the combination distributions for DCO ad rendering during serving time. An online evaluation of this explore-exploit solution, via online bucket A/B testing, serving Gemini native DCO traffic, showed a 53.5% CVR lift, when compared to a control bucket serving all combinations uniformly at random.