Abstract:We present DINO-Tracker -- a new framework for long-term dense tracking in video. The pillar of our approach is combining test-time training on a single video, with the powerful localized semantic features learned by a pre-trained DINO-ViT model. Specifically, our framework simultaneously adopts DINO's features to fit to the motion observations of the test video, while training a tracker that directly leverages the refined features. The entire framework is trained end-to-end using a combination of self-supervised losses, and regularization that allows us to retain and benefit from DINO's semantic prior. Extensive evaluation demonstrates that our method achieves state-of-the-art results on known benchmarks. DINO-tracker significantly outperforms self-supervised methods and is competitive with state-of-the-art supervised trackers, while outperforming them in challenging cases of tracking under long-term occlusions.
Abstract:Yahoo's native advertising (also known as Gemini native) serves billions of ad impressions daily, reaching a yearly run-rate of many hundred of millions USD. Driving the Gemini native models that are used to predict both click probability (pCTR) and conversion probability (pCONV) is OFFSET - a feature enhanced collaborative-filtering (CF) based event prediction algorithm. \offset is a one-pass algorithm that updates its model for every new batch of logged data using a stochastic gradient descent (SGD) based approach. Since OFFSET represents its users by their features (i.e., user-less model) due to sparsity issues, rule based hard frequency capping (HFC) is used to control the number of times a certain user views a certain ad. Moreover, related statistics reveal that user ad fatigue results in a dramatic drop in click through rate (CTR). Therefore, to improve click prediction accuracy, we propose a soft frequency capping (SFC) approach, where the frequency feature is incorporated into the OFFSET model as a user-ad feature and its weight vector is learned via logistic regression as part of OFFSET training. Online evaluation of the soft frequency capping algorithm via bucket testing showed a significant 7.3% revenue lift. Since then, the frequency feature enhanced model has been pushed to production serving all traffic, and is generating a hefty revenue lift for Yahoo Gemini native. We also report related statistics that reveal, among other things, that while users' gender does not affect ad fatigue, the latter seems to increase with users' age.
Abstract:We describe the NYU-CUBoulder systems for the SIGMORPHON 2020 Task 0 on typologically diverse morphological inflection and Task 2 on unsupervised morphological paradigm completion. The former consists of generating morphological inflections from a lemma and a set of morphosyntactic features describing the target form. The latter requires generating entire paradigms for a set of given lemmas from raw text alone. We model morphological inflection as a sequence-to-sequence problem, where the input is the sequence of the lemma's characters with morphological tags, and the output is the sequence of the inflected form's characters. First, we apply a transformer model to the task. Second, as inflected forms share most characters with the lemma, we further propose a pointer-generator transformer model to allow easy copying of input characters. Our best performing system for Task 0 is placed 6th out of 23 systems. We further use our inflection systems as subcomponents of approaches for Task 2. Our best performing system for Task 2 is the 2nd best out of 7 submissions.