Abstract:With yearly revenue exceeding one billion USD, Yahoo Gemini native advertising marketplace serves more than two billion impressions daily to hundreds of millions of unique users. One of the fastest growing segments of Gemini native is dynamic-product-ads (DPA), where major advertisers, such as Amazon and Walmart, provide catalogs with millions of products for the system to choose from and present to users. The subject of this work is finding and expanding the right audience for each DPA ad, which is one of the many challenges DPA presents. Approaches such as targeting various user groups, e.g., users who already visited the advertisers' websites (Retargeting), users that searched for certain products (Search-Prospecting), or users that reside in preferred locations (Location-Prospecting), have limited audience expansion capabilities. In this work we present two new approaches for audience expansion that also maintain predefined performance goals. The Conversion-Prospecting approach predicts DPA conversion rates based on Gemini native logged data, and calculates the expected cost-per-action (CPA) for determining users' eligibility to products and optimizing DPA bids in Gemini native auctions. To support new advertisers and products, the Trending-Prospecting approach matches trending products to users by learning their tendency towards products from advertisers' sites logged events. The tendency scores indicate the popularity of the product and the similarity of the user to those who have previously engaged with this product. The two new prospecting approaches were tested online, serving real Gemini native traffic, demonstrating impressive DPA delivery and DPA revenue lifts while maintaining most traffic within the acceptable CPA range (i.e., performance goal). After a successful testing phase, the proposed approaches are currently in production and serve all Gemini native traffic.
Abstract:Verizon Media (VZM) native advertising is one of VZM largest and fastest growing businesses, reaching a run-rate of several hundred million USDs in the past year. Driving the VZM native models that are used to predict event probabilities, such as click and conversion probabilities, is OFFSET - a feature enhanced collaborative-filtering based event-prediction algorithm. In this work we focus on the challenge of predicting click-through rates (CTR) when we are aware that some of the clicks have short dwell-time and are defined as accidental clicks. An accidental click implies little affinity between the user and the ad, so predicting that similar users will click on the ad is inaccurate. Therefore, it may be beneficial to remove clicks with dwell-time lower than a predefined threshold from the training set. However, we cannot ignore these positive events, as filtering these will cause the model to under predict. Previous approaches have tried to apply filtering and then adding corrective biases to the CTR predictions, but did not yield revenue lifts and therefore were not adopted. In this work, we present a new approach where the positive weight of the accidental clicks is distributed among all of the negative events (skips), based on their likelihood of causing accidental clicks, as predicted by an auxiliary model. These likelihoods are taken as the correct labels of the negative events, shifting our training from using only binary labels and adopting a binary cross-entropy loss function in our training process. After showing offline performance improvements, the modified model was tested online serving VZM native users, and provided 1.18% revenue lift over the production model which is agnostic to accidental clicks.