Abstract:Learning with identical train and test distributions has been extensively investigated both practically and theoretically. Much remains to be understood, however, in statistical learning under distribution shifts. This paper focuses on a distribution shift setting where train and test distributions can be related by classes of (data) transformation maps. We initiate a theoretical study for this framework, investigating learning scenarios where the target class of transformations is either known or unknown. We establish learning rules and algorithmic reductions to Empirical Risk Minimization (ERM), accompanied with learning guarantees. We obtain upper bounds on the sample complexity in terms of the VC dimension of the class composing predictors with transformations, which we show in many cases is not much larger than the VC dimension of the class of predictors. We highlight that the learning rules we derive offer a game-theoretic viewpoint on distribution shift: a learner searching for predictors and an adversary searching for transformation maps to respectively minimize and maximize the worst-case loss.
Abstract:Multi-distribution or collaborative learning involves learning a single predictor that works well across multiple data distributions, using samples from each during training. Recent research on multi-distribution learning, focusing on binary loss and finite VC dimension classes, has shown near-optimal sample complexity that is achieved with oracle efficient algorithms. That is, these algorithms are computationally efficient given an efficient ERM for the class. Unlike in classical PAC learning, where the optimal sample complexity is achieved with deterministic predictors, current multi-distribution learning algorithms output randomized predictors. This raises the question: can these algorithms be derandomized to produce a deterministic predictor for multiple distributions? Through a reduction to discrepancy minimization, we show that derandomizing multi-distribution learning is computationally hard, even when ERM is computationally efficient. On the positive side, we identify a structural condition enabling an efficient black-box reduction, converting existing randomized multi-distribution predictors into deterministic ones.
Abstract:Despite extraordinary progress, current machine learning systems have been shown to be brittle against adversarial examples: seemingly innocuous but carefully crafted perturbations of test examples that cause machine learning predictors to misclassify. Can we learn predictors robust to adversarial examples? and how? There has been much empirical interest in this contemporary challenge in machine learning, and in this thesis, we address it from a theoretical perspective. In this thesis, we explore what robustness properties can we hope to guarantee against adversarial examples and develop an understanding of how to algorithmically guarantee them. We illustrate the need to go beyond traditional approaches and principles such as empirical risk minimization and uniform convergence, and make contributions that can be categorized as follows: (1) introducing problem formulations capturing aspects of emerging practical challenges in robust learning, (2) designing new learning algorithms with provable robustness guarantees, and (3) characterizing the complexity of robust learning and fundamental limitations on the performance of any algorithm.
Abstract:We study the fundamental mistake bound and sample complexity in the strategic classification, where agents can strategically manipulate their feature vector up to an extent in order to be predicted as positive. For example, given a classifier determining college admission, student candidates may try to take easier classes to improve their GPA, retake SAT and change schools in an effort to fool the classifier. Ball manipulations are a widely studied class of manipulations in the literature, where agents can modify their feature vector within a bounded radius ball. Unlike most prior work, our work considers manipulations to be personalized, meaning that agents can have different levels of manipulation abilities (e.g., varying radii for ball manipulations), and unknown to the learner. We formalize the learning problem in an interaction model where the learner first deploys a classifier and the agent manipulates the feature vector within their manipulation set to game the deployed classifier. We investigate various scenarios in terms of the information available to the learner during the interaction, such as observing the original feature vector before or after deployment, observing the manipulated feature vector, or not seeing either the original or the manipulated feature vector. We begin by providing online mistake bounds and PAC sample complexity in these scenarios for ball manipulations. We also explore non-ball manipulations and show that, even in the simplest scenario where both the original and the manipulated feature vectors are revealed, the mistake bounds and sample complexity are lower bounded by $\Omega(|\mathcal{H}|)$ when the target function belongs to a known class $\mathcal{H}$.
Abstract:Consider patch attacks, where at test-time an adversary manipulates a test image with a patch in order to induce a targeted misclassification. We consider a recent defense to patch attacks, Patch-Cleanser (Xiang et al. [2022]). The Patch-Cleanser algorithm requires a prediction model to have a ``two-mask correctness'' property, meaning that the prediction model should correctly classify any image when any two blank masks replace portions of the image. Xiang et al. learn a prediction model to be robust to two-mask operations by augmenting the training set with pairs of masks at random locations of training images and performing empirical risk minimization (ERM) on the augmented dataset. However, in the non-realizable setting when no predictor is perfectly correct on all two-mask operations on all images, we exhibit an example where ERM fails. To overcome this challenge, we propose a different algorithm that provably learns a predictor robust to all two-mask operations using an ERM oracle, based on prior work by Feige et al. [2015]. We also extend this result to a multiple-group setting, where we can learn a predictor that achieves low robust loss on all groups simultaneously.
Abstract:We present a minimax optimal learner for the problem of learning predictors robust to adversarial examples at test-time. Interestingly, we find that this requires new algorithmic ideas and approaches to adversarially robust learning. In particular, we show, in a strong negative sense, the suboptimality of the robust learner proposed by Montasser, Hanneke, and Srebro (2019) and a broader family of learners we identify as local learners. Our results are enabled by adopting a global perspective, specifically, through a key technical contribution: the global one-inclusion graph, which may be of independent interest, that generalizes the classical one-inclusion graph due to Haussler, Littlestone, and Warmuth (1994). Finally, as a byproduct, we identify a dimension characterizing qualitatively and quantitatively what classes of predictors $\mathcal{H}$ are robustly learnable. This resolves an open problem due to Montasser et al. (2019), and closes a (potentially) infinite gap between the established upper and lower bounds on the sample complexity of adversarially robust learning.
Abstract:Transformation invariances are present in many real-world problems. For example, image classification is usually invariant to rotation and color transformation: a rotated car in a different color is still identified as a car. Data augmentation, which adds the transformed data into the training set and trains a model on the augmented data, is one commonly used technique to build these invariances into the learning process. However, it is unclear how data augmentation performs theoretically and what the optimal algorithm is in presence of transformation invariances. In this paper, we study PAC learnability under transformation invariances in three settings according to different levels of realizability: (i) A hypothesis fits the augmented data; (ii) A hypothesis fits only the original data and the transformed data lying in the support of the data distribution; (iii) Agnostic case. One interesting observation is that distinguishing between the original data and the transformed data is necessary to achieve optimal accuracy in setting (ii) and (iii), which implies that any algorithm not differentiating between the original and transformed data (including data augmentation) is not optimal. Furthermore, this type of algorithms can even "harm" the accuracy. In setting (i), although it is unnecessary to distinguish between the two data sets, data augmentation still does not perform optimally. Due to such a difference, we propose two combinatorial measures characterizing the optimal sample complexity in setting (i) and (ii)(iii) and provide the optimal algorithms.
Abstract:We present an oracle-efficient algorithm for boosting the adversarial robustness of barely robust learners. Barely robust learning algorithms learn predictors that are adversarially robust only on a small fraction $\beta \ll 1$ of the data distribution. Our proposed notion of barely robust learning requires robustness with respect to a "larger" perturbation set; which we show is necessary for strongly robust learning, and that weaker relaxations are not sufficient for strongly robust learning. Our results reveal a qualitative and quantitative equivalence between two seemingly unrelated problems: strongly robust learning and barely robust learning.
Abstract:We study the problem of adversarially robust learning in the transductive setting. For classes $\mathcal{H}$ of bounded VC dimension, we propose a simple transductive learner that when presented with a set of labeled training examples and a set of unlabeled test examples (both sets possibly adversarially perturbed), it correctly labels the test examples with a robust error rate that is linear in the VC dimension and is adaptive to the complexity of the perturbation set. This result provides an exponential improvement in dependence on VC dimension over the best known upper bound on the robust error in the inductive setting, at the expense of competing with a more restrictive notion of optimal robust error.
Abstract:We study the problem of learning predictors that are robust to adversarial examples with respect to an unknown perturbation set, relying instead on interaction with an adversarial attacker or access to attack oracles, examining different models for such interactions. We obtain upper bounds on the sample complexity and upper and lower bounds on the number of required interactions, or number of successful attacks, in different interaction models, in terms of the VC and Littlestone dimensions of the hypothesis class of predictors, and without any assumptions on the perturbation set.