Abstract:Achieving a provable exponential quantum speedup for an important machine learning task has been a central research goal since the seminal HHL quantum algorithm for solving linear systems and the subsequent quantum recommender systems algorithm by Kerenidis and Prakash. These algorithms were initially believed to be strong candidates for exponential speedups, but a lower bound ruling out similar classical improvements remained absent. In breakthrough work by Tang, it was demonstrated that this lack of progress in classical lower bounds was for good reasons. Concretely, she gave a classical counterpart of the quantum recommender systems algorithm, reducing the quantum advantage to a mere polynomial. Her approach is quite general and was named quantum-inspired classical algorithms. Since then, almost all the initially exponential quantum machine learning speedups have been reduced to polynomial via new quantum-inspired classical algorithms. From the current state-of-affairs, it is unclear whether we can hope for exponential quantum speedups for any natural machine learning task. In this work, we present the first such provable exponential separation between quantum and quantum-inspired classical algorithms. We prove the separation for the basic problem of solving a linear system when the input matrix is well-conditioned and has sparse rows and columns.
Abstract:Multi-distribution or collaborative learning involves learning a single predictor that works well across multiple data distributions, using samples from each during training. Recent research on multi-distribution learning, focusing on binary loss and finite VC dimension classes, has shown near-optimal sample complexity that is achieved with oracle efficient algorithms. That is, these algorithms are computationally efficient given an efficient ERM for the class. Unlike in classical PAC learning, where the optimal sample complexity is achieved with deterministic predictors, current multi-distribution learning algorithms output randomized predictors. This raises the question: can these algorithms be derandomized to produce a deterministic predictor for multiple distributions? Through a reduction to discrepancy minimization, we show that derandomizing multi-distribution learning is computationally hard, even when ERM is computationally efficient. On the positive side, we identify a structural condition enabling an efficient black-box reduction, converting existing randomized multi-distribution predictors into deterministic ones.
Abstract:Boosting is an extremely successful idea, allowing one to combine multiple low accuracy classifiers into a much more accurate voting classifier. In this work, we present a new and surprisingly simple Boosting algorithm that obtains a provably optimal sample complexity. Sample optimal Boosting algorithms have only recently been developed, and our new algorithm has the fastest runtime among all such algorithms and is the simplest to describe: Partition your training data into 5 disjoint pieces of equal size, run AdaBoost on each, and combine the resulting classifiers via a majority vote. In addition to this theoretical contribution, we also perform the first empirical comparison of the proposed sample optimal Boosting algorithms. Our pilot empirical study suggests that our new algorithm might outperform previous algorithms on large data sets.
Abstract:Recent works on the parallel complexity of Boosting have established strong lower bounds on the tradeoff between the number of training rounds $p$ and the total parallel work per round $t$. These works have also presented highly non-trivial parallel algorithms that shed light on different regions of this tradeoff. Despite these advancements, a significant gap persists between the theoretical lower bounds and the performance of these algorithms across much of the tradeoff space. In this work, we essentially close this gap by providing both improved lower bounds on the parallel complexity of weak-to-strong learners, and a parallel Boosting algorithm whose performance matches these bounds across the entire $p$ vs.~$t$ compromise spectrum, up to logarithmic factors. Ultimately, this work settles the true parallel complexity of Boosting algorithms that are nearly sample-optimal.
Abstract:PAC learning, dating back to Valiant'84 and Vapnik and Chervonenkis'64,'74, is a classic model for studying supervised learning. In the agnostic setting, we have access to a hypothesis set $\mathcal{H}$ and a training set of labeled samples $(x_1,y_1),\dots,(x_n,y_n) \in \mathcal{X} \times \{-1,1\}$ drawn i.i.d. from an unknown distribution $\mathcal{D}$. The goal is to produce a classifier $h : \mathcal{X} \to \{-1,1\}$ that is competitive with the hypothesis $h^\star_{\mathcal{D}} \in \mathcal{H}$ having the least probability of mispredicting the label $y$ of a new sample $(x,y)\sim \mathcal{D}$. Empirical Risk Minimization (ERM) is a natural learning algorithm, where one simply outputs the hypothesis from $\mathcal{H}$ making the fewest mistakes on the training data. This simple algorithm is known to have an optimal error in terms of the VC-dimension of $\mathcal{H}$ and the number of samples $n$. In this work, we revisit agnostic PAC learning and first show that ERM is in fact sub-optimal if we treat the performance of the best hypothesis, denoted $\tau:=\Pr_{\mathcal{D}}[h^\star_{\mathcal{D}}(x) \neq y]$, as a parameter. Concretely we show that ERM, and any other proper learning algorithm, is sub-optimal by a $\sqrt{\ln(1/\tau)}$ factor. We then complement this lower bound with the first learning algorithm achieving an optimal error for nearly the full range of $\tau$. Our algorithm introduces several new ideas that we hope may find further applications in learning theory.
Abstract:Developing an optimal PAC learning algorithm in the realizable setting, where empirical risk minimization (ERM) is suboptimal, was a major open problem in learning theory for decades. The problem was finally resolved by Hanneke a few years ago. Unfortunately, Hanneke's algorithm is quite complex as it returns the majority vote of many ERM classifiers that are trained on carefully selected subsets of the data. It is thus a natural goal to determine the simplest algorithm that is optimal. In this work we study the arguably simplest algorithm that could be optimal: returning the majority vote of three ERM classifiers. We show that this algorithm achieves the optimal in-expectation bound on its error which is provably unattainable by a single ERM classifier. Furthermore, we prove a near-optimal high-probability bound on this algorithm's error. We conjecture that a better analysis will prove that this algorithm is in fact optimal in the high-probability regime.
Abstract:We provide efficient replicable algorithms for the problem of learning large-margin halfspaces. Our results improve upon the algorithms provided by Impagliazzo, Lei, Pitassi, and Sorrell [STOC, 2022]. We design the first dimension-independent replicable algorithms for this task which runs in polynomial time, is proper, and has strictly improved sample complexity compared to the one achieved by Impagliazzo et al. [2022] with respect to all the relevant parameters. Moreover, our first algorithm has sample complexity that is optimal with respect to the accuracy parameter $\epsilon$. We also design an SGD-based replicable algorithm that, in some parameters' regimes, achieves better sample and time complexity than our first algorithm. Departing from the requirement of polynomial time algorithms, using the DP-to-Replicability reduction of Bun, Gaboardi, Hopkins, Impagliazzo, Lei, Pitassi, Sorrell, and Sivakumar [STOC, 2023], we show how to obtain a replicable algorithm for large-margin halfspaces with improved sample complexity with respect to the margin parameter $\tau$, but running time doubly exponential in $1/\tau^2$ and worse sample complexity dependence on $\epsilon$ than one of our previous algorithms. We then design an improved algorithm with better sample complexity than all three of our previous algorithms and running time exponential in $1/\tau^{2}$.
Abstract:In boosting, we aim to leverage multiple weak learners to produce a strong learner. At the center of this paradigm lies the concept of building the strong learner as a voting classifier, which outputs a weighted majority vote of the weak learners. While many successful boosting algorithms, such as the iconic AdaBoost, produce voting classifiers, their theoretical performance has long remained sub-optimal: the best known bounds on the number of training examples necessary for a voting classifier to obtain a given accuracy has so far always contained at least two logarithmic factors above what is known to be achievable by general weak-to-strong learners. In this work, we break this barrier by proposing a randomized boosting algorithm that outputs voting classifiers whose generalization error contains a single logarithmic dependency on the sample size. We obtain this result by building a general framework that extends sample compression methods to support randomized learning algorithms based on sub-sampling.
Abstract:The sparse Johnson-Lindenstrauss transform is one of the central techniques in dimensionality reduction. It supports embedding a set of $n$ points in $\mathbb{R}^d$ into $m=O(\varepsilon^{-2} \lg n)$ dimensions while preserving all pairwise distances to within $1 \pm \varepsilon$. Each input point $x$ is embedded to $Ax$, where $A$ is an $m \times d$ matrix having $s$ non-zeros per column, allowing for an embedding time of $O(s \|x\|_0)$. Since the sparsity of $A$ governs the embedding time, much work has gone into improving the sparsity $s$. The current state-of-the-art by Kane and Nelson (JACM'14) shows that $s = O(\varepsilon ^{-1} \lg n)$ suffices. This is almost matched by a lower bound of $s = \Omega(\varepsilon ^{-1} \lg n/\lg(1/\varepsilon))$ by Nelson and Nguyen (STOC'13). Previous work thus suggests that we have near-optimal embeddings. In this work, we revisit sparse embeddings and identify a loophole in the lower bound. Concretely, it requires $d \geq n$, which in many applications is unrealistic. We exploit this loophole to give a sparser embedding when $d = o(n)$, achieving $s = O(\varepsilon^{-1}(\lg n/\lg(1/\varepsilon)+\lg^{2/3}n \lg^{1/3} d))$. We also complement our analysis by strengthening the lower bound of Nelson and Nguyen to hold also when $d \ll n$, thereby matching the first term in our new sparsity upper bound. Finally, we also improve the sparsity of the best oblivious subspace embeddings for optimal embedding dimensionality.
Abstract:AdaBoost is a classic boosting algorithm for combining multiple inaccurate classifiers produced by a weak learner, to produce a strong learner with arbitrarily high accuracy when given enough training data. Determining the optimal number of samples necessary to obtain a given accuracy of the strong learner, is a basic learning theoretic question. Larsen and Ritzert (NeurIPS'22) recently presented the first provably optimal weak-to-strong learner. However, their algorithm is somewhat complicated and it remains an intriguing question whether the prototypical boosting algorithm AdaBoost also makes optimal use of training samples. In this work, we answer this question in the negative. Concretely, we show that the sample complexity of AdaBoost, and other classic variations thereof, are sub-optimal by at least one logarithmic factor in the desired accuracy of the strong learner.