Abstract:A set of probabilistic forecasts is calibrated if each prediction of the forecaster closely approximates the empirical distribution of outcomes on the subset of timesteps where that prediction was made. We study the fundamental problem of online calibrated forecasting of binary sequences, which was initially studied by Foster & Vohra (1998). They derived an algorithm with $O(T^{2/3})$ calibration error after $T$ time steps, and showed a lower bound of $\Omega(T^{1/2})$. These bounds remained stagnant for two decades, until Qiao & Valiant (2021) improved the lower bound to $\Omega(T^{0.528})$ by introducing a combinatorial game called sign preservation and showing that lower bounds for this game imply lower bounds for calibration. We introduce a strengthening of Qiao & Valiant's game that we call sign preservation with reuse (SPR). We prove that the relationship between SPR and calibrated forecasting is bidirectional: not only do lower bounds for SPR translate into lower bounds for calibration, but algorithms for SPR also translate into new algorithms for calibrated forecasting. In particular, any strategy that improves the trivial upper bound for the value of the SPR game would imply a forecasting algorithm with calibration error exponent less than 2/3, improving Foster & Vohra's upper bound for the first time. Using similar ideas, we then prove a slightly stronger lower bound than that of Qiao & Valiant, namely $\Omega(T^{0.54389})$. Our lower bound is obtained by an oblivious adversary, marking the first $\omega(T^{1/2})$ calibration lower bound for oblivious adversaries.
Abstract:In this paper, we study the offline RL problem with linear function approximation. Our main structural assumption is that the MDP has low inherent Bellman error, which stipulates that linear value functions have linear Bellman backups with respect to the greedy policy. This assumption is natural in that it is essentially the minimal assumption required for value iteration to succeed. We give a computationally efficient algorithm which succeeds under a single-policy coverage condition on the dataset, namely which outputs a policy whose value is at least that of any policy which is well-covered by the dataset. Even in the setting when the inherent Bellman error is 0 (termed linear Bellman completeness), our algorithm yields the first known guarantee under single-policy coverage. In the setting of positive inherent Bellman error ${\varepsilon_{\mathrm{BE}}} > 0$, we show that the suboptimality error of our algorithm scales with $\sqrt{\varepsilon_{\mathrm{BE}}}$. Furthermore, we prove that the scaling of the suboptimality with $\sqrt{\varepsilon_{\mathrm{BE}}}$ cannot be improved for any algorithm. Our lower bound stands in contrast to many other settings in reinforcement learning with misspecification, where one can typically obtain performance that degrades linearly with the misspecification error.
Abstract:The empirical risk minimization (ERM) principle has been highly impactful in machine learning, leading both to near-optimal theoretical guarantees for ERM-based learning algorithms as well as driving many of the recent empirical successes in deep learning. In this paper, we investigate the question of whether the ability to perform ERM, which computes a hypothesis minimizing empirical risk on a given dataset, is necessary for efficient learning: in particular, is there a weaker oracle than ERM which can nevertheless enable learnability? We answer this question affirmatively, showing that in the realizable setting of PAC learning for binary classification, a concept class can be learned using an oracle which only returns a single bit indicating whether a given dataset is realizable by some concept in the class. The sample complexity and oracle complexity of our algorithm depend polynomially on the VC dimension of the hypothesis class, thus showing that there is only a polynomial price to pay for use of our weaker oracle. Our results extend to the agnostic learning setting with a slight strengthening of the oracle, as well as to the partial concept, multiclass and real-valued learning settings. In the setting of partial concept classes, prior to our work no oracle-efficient algorithms were known, even with a standard ERM oracle. Thus, our results address a question of Alon et al. (2021) who asked whether there are algorithmic principles which enable efficient learnability in this setting.
Abstract:One of the most natural approaches to reinforcement learning (RL) with function approximation is value iteration, which inductively generates approximations to the optimal value function by solving a sequence of regression problems. To ensure the success of value iteration, it is typically assumed that Bellman completeness holds, which ensures that these regression problems are well-specified. We study the problem of learning an optimal policy under Bellman completeness in the online model of RL with linear function approximation. In the linear setting, while statistically efficient algorithms are known under Bellman completeness (e.g., Jiang et al. (2017); Zanette et al. (2020)), these algorithms all rely on the principle of global optimism which requires solving a nonconvex optimization problem. In particular, it has remained open as to whether computationally efficient algorithms exist. In this paper we give the first polynomial-time algorithm for RL under linear Bellman completeness when the number of actions is any constant.
Abstract:We study computational and statistical aspects of learning Latent Markov Decision Processes (LMDPs). In this model, the learner interacts with an MDP drawn at the beginning of each epoch from an unknown mixture of MDPs. To sidestep known impossibility results, we consider several notions of separation of the constituent MDPs. The main thrust of this paper is in establishing a nearly-sharp *statistical threshold* for the horizon length necessary for efficient learning. On the computational side, we show that under a weaker assumption of separability under the optimal policy, there is a quasi-polynomial algorithm with time complexity scaling in terms of the statistical threshold. We further show a near-matching time complexity lower bound under the exponential time hypothesis.
Abstract:Motivated by the problem of detecting AI-generated text, we consider the problem of watermarking the output of language models with provable guarantees. We aim for watermarks which satisfy: (a) undetectability, a cryptographic notion introduced by Christ, Gunn & Zamir (2024) which stipulates that it is computationally hard to distinguish watermarked language model outputs from the model's actual output distribution; and (b) robustness to channels which introduce a constant fraction of adversarial insertions, substitutions, and deletions to the watermarked text. Earlier schemes could only handle stochastic substitutions and deletions, and thus we are aiming for a more natural and appealing robustness guarantee that holds with respect to edit distance. Our main result is a watermarking scheme which achieves both undetectability and robustness to edits when the alphabet size for the language model is allowed to grow as a polynomial in the security parameter. To derive such a scheme, we follow an approach introduced by Christ & Gunn (2024), which proceeds via first constructing pseudorandom codes satisfying undetectability and robustness properties analogous to those above; our key idea is to handle adversarial insertions and deletions by interpreting the symbols as indices into the codeword, which we call indexing pseudorandom codes. Additionally, our codes rely on weaker computational assumptions than used in previous work. Then we show that there is a generic transformation from such codes over large alphabets to watermarking schemes for arbitrary language models.
Abstract:The study of population dynamics originated with early sociological works (Malthus, 1872) but has since extended into many fields, including biology, epidemiology, evolutionary game theory, and economics. Most studies on population dynamics focus on the problem of prediction rather than control. Existing mathematical models for population control are often restricted to specific, noise-free dynamics, while real-world population changes can be complex and adversarial. To address this gap, we propose a new framework based on the paradigm of online control. We first characterize a set of linear dynamical systems that can naturally model evolving populations. We then give an efficient gradient-based controller for these systems, with near-optimal regret bounds with respect to a broad class of linear policies. Our empirical evaluations demonstrate the effectiveness of the proposed algorithm for population control even in non-linear models such as SIR and replicator dynamics.
Abstract:Supervised learning is often computationally easy in practice. But to what extent does this mean that other modes of learning, such as reinforcement learning (RL), ought to be computationally easy by extension? In this work we show the first cryptographic separation between RL and supervised learning, by exhibiting a class of block MDPs and associated decoding functions where reward-free exploration is provably computationally harder than the associated regression problem. We also show that there is no computationally efficient algorithm for reward-directed RL in block MDPs, even when given access to an oracle for this regression problem. It is known that being able to perform regression in block MDPs is necessary for finding a good policy; our results suggest that it is not sufficient. Our separation lower bound uses a new robustness property of the Learning Parities with Noise (LPN) hardness assumption, which is crucial in handling the dependent nature of RL data. We argue that separations and oracle lower bounds, such as ours, are a more meaningful way to prove hardness of learning because the constructions better reflect the practical reality that supervised learning by itself is often not the computational bottleneck.
Abstract:We provide a novel reduction from swap-regret minimization to external-regret minimization, which improves upon the classical reductions of Blum-Mansour [BM07] and Stolz-Lugosi [SL05] in that it does not require finiteness of the space of actions. We show that, whenever there exists a no-external-regret algorithm for some hypothesis class, there must also exist a no-swap-regret algorithm for that same class. For the problem of learning with expert advice, our result implies that it is possible to guarantee that the swap regret is bounded by {\epsilon} after $\log(N)^{O(1/\epsilon)}$ rounds and with $O(N)$ per iteration complexity, where $N$ is the number of experts, while the classical reductions of Blum-Mansour and Stolz-Lugosi require $O(N/\epsilon^2)$ rounds and at least $\Omega(N^2)$ per iteration complexity. Our result comes with an associated lower bound, which -- in contrast to that in [BM07] -- holds for oblivious and $\ell_1$-constrained adversaries and learners that can employ distributions over experts, showing that the number of rounds must be $\tilde\Omega(N/\epsilon^2)$ or exponential in $1/\epsilon$. Our reduction implies that, if no-regret learning is possible in some game, then this game must have approximate correlated equilibria, of arbitrarily good approximation. This strengthens the folklore implication of no-regret learning that approximate coarse correlated equilibria exist. Importantly, it provides a sufficient condition for the existence of correlated equilibrium which vastly extends the requirement that the action set is finite, thus answering a question left open by [DG22; Ass+23]. Moreover, it answers several outstanding questions about equilibrium computation and/or learning in games.
Abstract:A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability: approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called $\sigma$-smooth Nash equilibrium, for a smoothness parameter $\sigma$. In a $\sigma$-smooth Nash equilibrium, players only need to achieve utility at least as high as their best deviation to a $\sigma$-smooth strategy, which is a distribution that does not put too much mass (as parametrized by $\sigma$) on any fixed action. We distinguish two variants of $\sigma$-smooth Nash equilibria: strong $\sigma$-smooth Nash equilibria, in which players are required to play $\sigma$-smooth strategies under equilibrium play, and weak $\sigma$-smooth Nash equilibria, where there is no such requirement. We show that both weak and strong $\sigma$-smooth Nash equilibria have superior computational properties to Nash equilibria: when $\sigma$ as well as an approximation parameter $\epsilon$ and the number of players are all constants, there is a constant-time randomized algorithm to find a weak $\epsilon$-approximate $\sigma$-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a polynomial-time deterministic algorithm to find a strong $\epsilon$-approximate $\sigma$-smooth Nash equilibrium in a normal-form game. These results stand in contrast to the optimal algorithm for computing $\epsilon$-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time. We complement our upper bounds by showing that when either $\sigma$ or $\epsilon$ is an inverse polynomial, finding a weak $\epsilon$-approximate $\sigma$-smooth Nash equilibria becomes computationally intractable.