Abstract:Amidst the rise of Large Multimodal Models (LMMs) and their widespread application in generating and interpreting complex content, the risk of propagating biased and harmful memes remains significant. Current safety measures often fail to detect subtly integrated hateful content within ``Confounder Memes''. To address this, we introduce \textsc{HateSieve}, a new framework designed to enhance the detection and segmentation of hateful elements in memes. \textsc{HateSieve} features a novel Contrastive Meme Generator that creates semantically paired memes, a customized triplet dataset for contrastive learning, and an Image-Text Alignment module that produces context-aware embeddings for accurate meme segmentation. Empirical experiments on the Hateful Meme Dataset show that \textsc{HateSieve} not only surpasses existing LMMs in performance with fewer trainable parameters but also offers a robust mechanism for precisely identifying and isolating hateful content. \textcolor{red}{Caution: Contains academic discussions of hate speech; viewer discretion advised.}
Abstract:Online hate speech proliferation has created a difficult problem for social media platforms. A particular challenge relates to the use of coded language by groups interested in both creating a sense of belonging for its users and evading detection. Coded language evolves quickly and its use varies over time. This paper proposes a methodology for detecting emerging coded hate-laden terminology. The methodology is tested in the context of online antisemitic discourse. The approach considers posts scraped from social media platforms, often used by extremist users. The posts are scraped using seed expressions related to previously known discourse of hatred towards Jews. The method begins by identifying the expressions most representative of each post and calculating their frequency in the whole corpus. It filters out grammatically incoherent expressions as well as previously encountered ones so as to focus on emergent well-formed terminology. This is followed by an assessment of semantic similarity to known antisemitic terminology using a fine-tuned large language model, and subsequent filtering out of the expressions that are too distant from known expressions of hatred. Emergent antisemitic expressions containing terms clearly relating to Jewish topics are then removed to return only coded expressions of hatred.
Abstract:This study explored the application of CNN-Transfer Learning for nondestructive chicken egg fertility detection for precision poultry hatchery practices. Four models, VGG16, ResNet50, InceptionNet, and MobileNet, were trained and evaluated on a dataset (200 single egg images) using augmented images (rotation, flip, scale, translation, and reflection). Although the training results demonstrated that all models achieved high accuracy, indicating their ability to accurately learn and classify chicken eggs' fertility state, when evaluated on the testing set, variations in accuracy and performance were observed. InceptionNet exhibited the best overall performance, accurately classifying fertile and non-fertile eggs. It demonstrated excellent performance in both training and testing sets in all parameters of the evaluation metrics. In testing set, it achieved an accuracy of 0.98, a sensitivity of 1 for detecting fertile eggs, and a specificity of 0.96 for identifying non-fertile eggs. The higher performance is attributed to its unique architecture efficiently capturing features at different scales leading to improved accuracy and robustness. Further optimization and fine-tuning of the models might necessary to address the limitations in accurately detecting fertile and non-fertile eggs in case of other models. This study highlighted the potential of CNN-Transfer Learning for nondestructive fertility detection and emphasizes the need for further research to enhance the models' capabilities and ensure accurate classification.
Abstract:A common approach to quantifying model interpretability is to calculate faithfulness metrics based on iteratively masking input tokens and measuring how much the predicted label changes as a result. However, we show that such metrics are generally not suitable for comparing the interpretability of different neural text classifiers as the response to masked inputs is highly model-specific. We demonstrate that iterative masking can produce large variation in faithfulness scores between comparable models, and show that masked samples are frequently outside the distribution seen during training. We further investigate the impact of adversarial attacks and adversarial training on faithfulness scores, and demonstrate the relevance of faithfulness measures for analyzing feature salience in text adversarial attacks. Our findings provide new insights into the limitations of current faithfulness metrics and key considerations to utilize them appropriately.
Abstract:The spread of misinformation in social media outlets has become a prevalent societal problem and is the cause of many kinds of social unrest. Curtailing its prevalence is of great importance and machine learning has shown significant promise. However, there are two main challenges when applying machine learning to this problem. First, while much too prevalent in one respect, misinformation, actually, represents only a minor proportion of all the postings seen on social media. Second, labeling the massive amount of data necessary to train a useful classifier becomes impractical. Considering these challenges, we propose a simple semi-supervised learning framework in order to deal with extreme class imbalances that has the advantage, over other approaches, of using actual rather than simulated data to inflate the minority class. We tested our framework on two sets of Covid-related Twitter data and obtained significant improvement in F1-measure on extremely imbalanced scenarios, as compared to simple classical and deep-learning data generation methods such as SMOTE, ADASYN, or GAN-based data generation.
Abstract:Continual learning (CL) is one of the most promising trends in recent machine learning research. Its goal is to go beyond classical assumptions in machine learning and develop models and learning strategies that present high robustness in dynamic environments. The landscape of CL research is fragmented into several learning evaluation protocols, comprising different learning tasks, datasets, and evaluation metrics. Additionally, the benchmarks adopted so far are still distant from the complexity of real-world scenarios, and are usually tailored to highlight capabilities specific to certain strategies. In such a landscape, it is hard to objectively assess strategies. In this work, we fill this gap for CL on image data by introducing two novel CL benchmarks that involve multiple heterogeneous tasks from six image datasets, with varying levels of complexity and quality. Our aim is to fairly evaluate current state-of-the-art CL strategies on a common ground that is closer to complex real-world scenarios. We additionally structure our benchmarks so that tasks are presented in increasing and decreasing order of complexity -- according to a curriculum -- in order to evaluate if current CL models are able to exploit structure across tasks. We devote particular emphasis to providing the CL community with a rigorous and reproducible evaluation protocol for measuring the ability of a model to generalize and not to forget while learning. Furthermore, we provide an extensive experimental evaluation showing that popular CL strategies, when challenged with our benchmarks, yield sub-par performance, high levels of forgetting, and present a limited ability to effectively leverage curriculum task ordering. We believe that these results highlight the need for rigorous comparisons in future CL works as well as pave the way to design new CL strategies that are able to deal with more complex scenarios.
Abstract:Anomaly detection is of paramount importance in many real-world domains, characterized by evolving behavior. Lifelong learning represents an emerging trend, answering the need for machine learning models that continuously adapt to new challenges in dynamic environments while retaining past knowledge. However, limited efforts are dedicated to building foundations for lifelong anomaly detection, which provides intrinsically different challenges compared to the more widely explored classification setting. In this paper, we face this issue by exploring, motivating, and discussing lifelong anomaly detection, trying to build foundations for its wider adoption. First, we explain why lifelong anomaly detection is relevant, defining challenges and opportunities to design anomaly detection methods that deal with lifelong learning complexities. Second, we characterize learning settings and a scenario generation procedure that enables researchers to experiment with lifelong anomaly detection using existing datasets. Third, we perform experiments with popular anomaly detection methods on proposed lifelong scenarios, emphasizing the gap in performance that could be gained with the adoption of lifelong learning. Overall, we conclude that the adoption of lifelong anomaly detection is important to design more robust models that provide a comprehensive view of the environment, as well as simultaneous adaptation and knowledge retention.
Abstract:We apply a large multilingual language model (BLOOM-176B) in open-ended generation of Chinese song lyrics, and evaluate the resulting lyrics for coherence and creativity using human reviewers. We find that current computational metrics for evaluating large language model outputs (MAUVE) have limitations in evaluation of creative writing. We note that the human concept of creativity requires lyrics to be both comprehensible and distinctive -- and that humans assess certain types of machine-generated lyrics to score more highly than real lyrics by popular artists. Inspired by the inherently multimodal nature of album releases, we leverage a Chinese-language stable diffusion model to produce high-quality lyric-guided album art, demonstrating a creative approach for an artist seeking inspiration for an album or single. Finally, we introduce the MojimLyrics dataset, a Chinese-language dataset of popular song lyrics for future research.
Abstract:As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment.
Abstract:Advances in natural language generation (NLG) have resulted in machine generated text that is increasingly difficult to distinguish from human authored text. Powerful open-source models are freely available, and user-friendly tools democratizing access to generative models are proliferating. The great potential of state-of-the-art NLG systems is tempered by the multitude of avenues for abuse. Detection of machine generated text is a key countermeasure for reducing abuse of NLG models, with significant technical challenges and numerous open problems. We provide a survey that includes both 1) an extensive analysis of threat models posed by contemporary NLG systems, and 2) the most complete review of machine generated text detection methods to date. This survey places machine generated text within its cybersecurity and social context, and provides strong guidance for future work addressing the most critical threat models, and ensuring detection systems themselves demonstrate trustworthiness through fairness, robustness, and accountability.