Abstract:Traditional Federated Learning (FL) follows a server-domincated cooperation paradigm which narrows the application scenarios of FL and decreases the enthusiasm of data holders to participate. To fully unleash the potential of FL, we advocate rethinking the design of current FL frameworks and extending it to a more generalized concept: Open Federated Learning Platforms. We propose two reciprocal cooperation frameworks for FL to achieve this: query-based FL and contract-based FL. In this survey, we conduct a comprehensive review of the feasibility of constructing an open FL platform from both technical and legal perspectives. We begin by reviewing the definition of FL and summarizing its inherent limitations, including server-client coupling, low model reusability, and non-public. In the query-based FL platform, which is an open model sharing and reusing platform empowered by the community for model mining, we explore a wide range of valuable topics, including the availability of up-to-date model repositories for model querying, legal compliance analysis between different model licenses, and copyright issues and intellectual property protection in model reusing. In particular, we introduce a novel taxonomy to streamline the analysis of model license compatibility in FL studies that involve batch model reusing methods, including combination, amalgamation, distillation, and generation. This taxonomy provides a systematic framework for identifying the corresponding clauses of licenses and facilitates the identification of potential legal implications and restrictions when reusing models. Through this survey, we uncover the the current dilemmas faced by FL and advocate for the development of sustainable open FL platforms. We aim to provide guidance for establishing such platforms in the future, while identifying potential problems and challenges that need to be addressed.
Abstract:The emerging availability of trained machine learning models has put forward the novel concept of Machine Learning Model Market in which one can harness the collective intelligence of multiple well-trained models to improve the performance of the resultant model through one-shot federated learning and ensemble learning in a data-free manner. However, picking the models available in the market for ensemble learning is time-consuming, as using all the models is not always the best approach. It is thus crucial to have an effective ensemble selection strategy that can find a good subset of the base models for the ensemble. Conventional ensemble selection techniques are not applicable, as we do not have access to the local datasets of the parties in the federated learning setting. In this paper, we present a novel Data-Free Diversity-Based method called DeDES to address the ensemble selection problem for models generated by one-shot federated learning in practical applications such as model markets. Experiments showed that our method can achieve both better performance and higher efficiency over 5 datasets and 4 different model structures under the different data-partition strategies.
Abstract:Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID, imbalanced (statistical heterogeneity) and distribution shifted training data of FL is distributed in the federated network, which will increase the divergences between the local models and the global model, further degrading performance. In this paper, we propose a flexible clustered federated learning (CFL) framework named FlexCFL, in which we 1) group the training of clients based on the similarities between the clients' optimization directions for lower training divergence; 2) implement an efficient newcomer device cold start mechanism for framework scalability and practicality; 3) flexibly migrate clients to meet the challenge of client-level data distribution shift. FlexCFL can achieve improvements by dividing joint optimization into groups of sub-optimization and can strike a balance between accuracy and communication efficiency in the distribution shift environment. The convergence and complexity are analyzed to demonstrate the efficiency of FlexCFL. We also evaluate FlexCFL on several open datasets and made comparisons with related CFL frameworks. The results show that FlexCFL can significantly improve absolute test accuracy by +10.6% on FEMNIST compared to FedAvg, +3.5% on FashionMNIST compared to FedProx, +8.4% on MNIST compared to FeSEM. The experiment results show that FlexCFL is also communication efficient in the distribution shift environment.
Abstract:Federated learning (FL) is an emerging distributed machine learning paradigm that protects privacy and tackles the problem of isolated data islands. At present, there are two main communication strategies of FL: synchronous FL and asynchronous FL. The advantages of synchronous FL are that the model has high precision and fast convergence speed. However, this synchronous communication strategy has the risk that the central server waits too long for the devices, namely, the straggler effect which has a negative impact on some time-critical applications. Asynchronous FL has a natural advantage in mitigating the straggler effect, but there are threats of model quality degradation and server crash. Therefore, we combine the advantages of these two strategies to propose a clustered semi-asynchronous federated learning (CSAFL) framework. We evaluate CSAFL based on four imbalanced federated datasets in a non-IID setting and compare CSAFL to the baseline methods. The experimental results show that CSAFL significantly improves test accuracy by more than +5% on the four datasets compared to TA-FedAvg. In particular, CSAFL improves absolute test accuracy by +34.4% on non-IID FEMNIST compared to TA-FedAvg.
Abstract:Federated Learning (FL) is a novel distributed machine learning which allows thousands of edge devices to train model locally without uploading data concentrically to the server. But since real federated settings are resource-constrained, FL is encountered with systems heterogeneity which causes a lot of stragglers directly and then leads to significantly accuracy reduction indirectly. To solve the problems caused by systems heterogeneity, we introduce a novel self-adaptive federated framework FedSAE which adjusts the training task of devices automatically and selects participants actively to alleviate the performance degradation. In this work, we 1) propose FedSAE which leverages the complete information of devices' historical training tasks to predict the affordable training workloads for each device. In this way, FedSAE can estimate the reliability of each device and self-adaptively adjust the amount of training load per client in each round. 2) combine our framework with Active Learning to self-adaptively select participants. Then the framework accelerates the convergence of the global model. In our framework, the server evaluates devices' value of training based on their training loss. Then the server selects those clients with bigger value for the global model to reduce communication overhead. The experimental result indicates that in a highly heterogeneous system, FedSAE converges faster than FedAvg, the vanilla FL framework. Furthermore, FedSAE outperforms than FedAvg on several federated datasets - FedSAE improves test accuracy by 26.7% and reduces stragglers by 90.3% on average.
Abstract:Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID and imbalanced (statistical heterogeneity) training data of FL is distributed in the federated network, which will increase the divergences between the local models and global model and further degrade the performance. In this paper, we propose a novel federated learning framework FedGroup based on a similarity-based clustering strategy, in which we 1) group the training of clients based on the similarities between the clients' optimize directions; 2) reduce the complexity of high-dimension low-sample size (HDLSS) parameter updates data clustering by decomposing the direction vectors to derive the ternary cosine similarity. FedGroup can achieve improvements by dividing joint optimization into groups of sub-optimization, and can be combined with FedProx, the state-of-the-art federated optimization algorithm. We evaluate FedGroup and FedGrouProx (combined with FedProx) on several open datasets. The experimental results show that our proposed frameworks significantly improving absolute test accuracy by +14.7% on FEMNIST compared to FedAvg, +5.4% on Sentiment140 compared to FedProx.
Abstract:Federated learning (FL) is a distributed deep learning method which enables multiple participants, such as mobile phones and IoT devices, to contribute a neural network model while their private training data remains in local devices. This distributed approach is promising in the edge computing system where have a large corpus of decentralized data and require high privacy. However, unlike the common training dataset, the data distribution of the edge computing system is imbalanced which will introduce biases in the model training and cause a decrease in accuracy of federated learning applications. In this paper, we demonstrate that the imbalanced distributed training data will cause accuracy degradation in FL. To counter this problem, we build a self-balancing federated learning framework call Astraea, which alleviates the imbalances by 1) Global data distribution based data augmentation, and 2) Mediator based multi-client rescheduling. Compared with FedAvg, the state-of-the-art FL algorithm, Astraea shows +5.59% and +5.89% improvement of top-1 accuracy on the imbalanced EMNIST and imbalanced CINIC-10 datasets, respectively. Meanwhile, the communication traffic of Astraea can be 92% lower than that of FedAvg.