IP Paris
Abstract:Despite the vast amount of information encoded in Knowledge Graphs (KGs), information about the class affiliation of entities remains often incomplete. Graph Convolutional Networks (GCNs) have been shown to be effective predictors of complete information about the class affiliation of entities in KGs. However, these models do not learn the class affiliation of entities in KGs incorporating the complexity of the task, which negatively affects the models prediction capabilities. To address this problem, we introduce a Markov process-based architecture into well-known GCN architectures. This end-to-end network learns the prediction of class affiliation of entities in KGs within a Markov process. The number of computational steps is learned during training using a geometric distribution. At the same time, the loss function combines insights from the field of evidential learning. The experiments show a performance improvement over existing models in several studied architectures and datasets. Based on the chosen hyperparameters for the geometric distribution, the expected number of computation steps can be adjusted to improve efficiency and accuracy during training.
Abstract:Due to its collaborative nature, Wikidata is known to have a complex taxonomy, with recurrent issues like the ambiguity between instances and classes, the inaccuracy of some taxonomic paths, the presence of cycles, and the high level of redundancy across classes. Manual efforts to clean up this taxonomy are time-consuming and prone to errors or subjective decisions. We present WiKC, a new version of Wikidata taxonomy cleaned automatically using a combination of Large Language Models (LLMs) and graph mining techniques. Operations on the taxonomy, such as cutting links or merging classes, are performed with the help of zero-shot prompting on an open-source LLM. The quality of the refined taxonomy is evaluated from both intrinsic and extrinsic perspectives, on a task of entity typing for the latter, showing the practical interest of WiKC.
Abstract:Knowledge graphs (KGs) have recently been used for many tools and applications, making them rich resources in structured format. However, in the real world, KGs grow due to the additions of new knowledge in the form of entities and relations, making these KGs dynamic. This chapter formally defines several types of dynamic KGs and summarizes how these KGs can be represented. Additionally, many neurosymbolic methods have been proposed for learning representations over static KGs for several tasks such as KG completion and entity alignment. This chapter further focuses on neurosymbolic methods for dynamic KGs with or without temporal information. More specifically, it provides an insight into neurosymbolic methods for dynamic (temporal or non-temporal) KG completion and entity alignment tasks. It further discusses the challenges of current approaches and provides some future directions.
Abstract:In this chapter, we address the problem of rule mining, beginning with essential background information, including measures of rule quality. We then explore various rule mining methodologies, categorized into three groups: inductive logic programming, path sampling and generalization, and linear programming. Following this, we delve into neurosymbolic methods, covering topics such as the integration of deep learning with rules, the use of embeddings for rule learning, and the application of large language models in rule learning.
Abstract:News recommendation plays a critical role in shaping the public's worldviews through the way in which it filters and disseminates information about different topics. Given the crucial impact that media plays in opinion formation, especially for sensitive topics, understanding the effects of personalized recommendation beyond accuracy has become essential in today's digital society. In this work, we present NeMig, a bilingual news collection on the topic of migration, and corresponding rich user data. In comparison to existing news recommendation datasets, which comprise a large variety of monolingual news, NeMig covers articles on a single controversial topic, published in both Germany and the US. We annotate the sentiment polarization of the articles and the political leanings of the media outlets, in addition to extracting subtopics and named entities disambiguated through Wikidata. These features can be used to analyze the effects of algorithmic news curation beyond accuracy-based performance, such as recommender biases and the creation of filter bubbles. We construct domain-specific knowledge graphs from the news text and metadata, thus encoding knowledge-level connections between articles. Importantly, while existing datasets include only click behavior, we collect user socio-demographic and political information in addition to explicit click feedback. We demonstrate the utility of NeMig through experiments on the tasks of news recommenders benchmarking, analysis of biases in recommenders, and news trends analysis. NeMig aims to provide a useful resource for the news recommendation community and to foster interdisciplinary research into the multidimensional effects of algorithmic news curation.
Abstract:Wikidata is one of the largest public general-purpose Knowledge Bases (KBs). Yet, due to its collaborative nature, its schema and taxonomy have become convoluted. For the YAGO 4 KB, we combined Wikidata with the ontology from Schema.org, which reduced and cleaned up the taxonomy and constraints and made it possible to run automated reasoners on the data. However, it also cut away large parts of the Wikidata taxonomy. In this paper, we present our effort to merge the entire Wikidata taxonomy into the YAGO KB as much as possible. We pay particular attention to logical constraints and a careful distinction of classes and instances. Our work creates YAGO 4.5, which adds a rich layer of informative classes to YAGO, while at the same time keeping the KB logically consistent.
Abstract:Embedding based Knowledge Graph (KG) Completion has gained much attention over the past few years. Most of the current algorithms consider a KG as a multidirectional labeled graph and lack the ability to capture the semantics underlying the schematic information. In a separate development, a vast amount of information has been captured within the Large Language Models (LLMs) which has revolutionized the field of Artificial Intelligence. KGs could benefit from these LLMs and vice versa. This vision paper discusses the existing algorithms for KG completion based on the variations for generating KG embeddings. It starts with discussing various KG completion algorithms such as transductive and inductive link prediction and entity type prediction algorithms. It then moves on to the algorithms utilizing type information within the KGs, LLMs, and finally to algorithms capturing the semantics represented in different description logic axioms. We conclude the paper with a critical reflection on the current state of work in the community and give recommendations for future directions.
Abstract:Due to the open world assumption, Knowledge Graphs (KGs) are never complete. In order to address this issue, various Link Prediction (LP) methods are proposed so far. Some of these methods are inductive LP models which are capable of learning representations for entities not seen during training. However, to the best of our knowledge, none of the existing inductive LP models focus on learning representations for unseen relations. In this work, a novel Relation Aware Inductive Link preDiction (RAILD) is proposed for KG completion which learns representations for both unseen entities and unseen relations. In addition to leveraging textual literals associated with both entities and relations by employing language models, RAILD also introduces a novel graph-based approach to generate features for relations. Experiments are conducted with different existing and newly created challenging benchmark datasets and the results indicate that RAILD leads to performance improvement over the state-of-the-art models. Moreover, since there are no existing inductive LP models which learn representations for unseen relations, we have created our own baselines and the results obtained with RAILD also outperform these baselines.
Abstract:The entity type information in Knowledge Graphs (KGs) such as DBpedia, Freebase, etc. is often incomplete due to automated generation or human curation. Entity typing is the task of assigning or inferring the semantic type of an entity in a KG. This paper presents \textit{GRAND}, a novel approach for entity typing leveraging different graph walk strategies in RDF2vec together with textual entity descriptions. RDF2vec first generates graph walks and then uses a language model to obtain embeddings for each node in the graph. This study shows that the walk generation strategy and the embedding model have a significant effect on the performance of the entity typing task. The proposed approach outperforms the baseline approaches on the benchmark datasets DBpedia and FIGER for entity typing in KGs for both fine-grained and coarse-grained classes. The results show that the combination of order-aware RDF2vec variants together with the contextual embeddings of the textual entity descriptions achieve the best results.
Abstract:News recommender systems are used by online news providers to alleviate information overload and to provide personalized content to users. However, algorithmic news curation has been hypothesized to create filter bubbles and to intensify users' selective exposure, potentially increasing their vulnerability to polarized opinions and fake news. In this paper, we show how information on news items' stance and sentiment can be utilized to analyze and quantify the extent to which recommender systems suffer from biases. To that end, we have annotated a German news corpus on the topic of migration using stance detection and sentiment analysis. In an experimental evaluation with four different recommender systems, our results show a slight tendency of all four models for recommending articles with negative sentiments and stances against the topic of refugees and migration. Moreover, we observed a positive correlation between the sentiment and stance bias of the text-based recommenders and the preexisting user bias, which indicates that these systems amplify users' opinions and decrease the diversity of recommended news. The knowledge-aware model appears to be the least prone to such biases, at the cost of predictive accuracy.