Abstract:In this work, we present SuFIA, the first framework for natural language-guided augmented dexterity for robotic surgical assistants. SuFIA incorporates the strong reasoning capabilities of large language models (LLMs) with perception modules to implement high-level planning and low-level control of a robot for surgical sub-task execution. This enables a learning-free approach to surgical augmented dexterity without any in-context examples or motion primitives. SuFIA uses a human-in-the-loop paradigm by restoring control to the surgeon in the case of insufficient information, mitigating unexpected errors for mission-critical tasks. We evaluate SuFIA on four surgical sub-tasks in a simulation environment and two sub-tasks on a physical surgical robotic platform in the lab, demonstrating its ability to perform common surgical sub-tasks through supervised autonomous operation under challenging physical and workspace conditions. Project website: orbit-surgical.github.io/sufia
Abstract:Physics-based simulations have accelerated progress in robot learning for driving, manipulation, and locomotion. Yet, a fast, accurate, and robust surgical simulation environment remains a challenge. In this paper, we present ORBIT-Surgical, a physics-based surgical robot simulation framework with photorealistic rendering in NVIDIA Omniverse. We provide 14 benchmark surgical tasks for the da Vinci Research Kit (dVRK) and Smart Tissue Autonomous Robot (STAR) which represent common subtasks in surgical training. ORBIT-Surgical leverages GPU parallelization to train reinforcement learning and imitation learning algorithms to facilitate study of robot learning to augment human surgical skills. ORBIT-Surgical also facilitates realistic synthetic data generation for active perception tasks. We demonstrate ORBIT-Surgical sim-to-real transfer of learned policies onto a physical dVRK robot. Project website: orbit-surgical.github.io